TPTP Problem File: PUZ097^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : PUZ097^5 : TPTP v9.0.0. Bugfixed v6.2.0.
% Domain : Puzzles
% Problem : TPS problem from CHECKERBOARD-THMS
% Version : Especial.
% English :
% Refs : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_0582 [Bro09]
% Status : CounterSatisfiable
% Rating : 0.33 v9.0.0, 0.25 v8.2.0, 0.50 v8.1.0, 0.60 v7.5.0, 0.40 v7.4.0, 0.50 v7.2.0, 0.33 v6.2.0
% Syntax : Number of formulae : 17 ( 5 unt; 11 typ; 5 def)
% Number of atoms : 39 ( 27 equ; 0 cnn)
% Maximal formula atoms : 2 ( 6 avg)
% Number of connectives : 99 ( 0 ~; 10 |; 13 &; 75 @)
% ( 0 <=>; 1 =>; 0 <=; 0 <~>)
% Maximal formula depth : 2 ( 1 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 20 ( 20 >; 0 *; 0 +; 0 <<)
% Number of symbols : 12 ( 11 usr; 4 con; 0-4 aty)
% Number of variables : 15 ( 9 ^; 6 !; 0 ?; 15 :)
% SPC : TH0_CSA_EQU_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
% Bugfixes : v5.2.0 - Added missing type declarations.
% : v6.2.0 - Reordered definitions.
%------------------------------------------------------------------------------
thf(c1_type,type,
c1: $i ).
thf(c2_type,type,
c2: $i ).
thf(c3_type,type,
c3: $i ).
thf(c4_type,type,
c4: $i ).
thf(g_type,type,
g: $i > $i > $i ).
thf(s_type,type,
s: $i > $i ).
thf(cCKB_BLACK_type,type,
cCKB_BLACK: $i > $i > $o ).
thf(cCKB_EVEN_type,type,
cCKB_EVEN: $i > $o ).
thf(cCKB_H_type,type,
cCKB_H: $i > $i > $i > $i > $o ).
thf(cCKB_INJ_type,type,
cCKB_INJ: ( $i > $i > $i > $i > $o ) > $o ).
thf(cCKB_ODD_type,type,
cCKB_ODD: $i > $o ).
thf(cCKB_INJ_def,definition,
( cCKB_INJ
= ( ^ [Xh: $i > $i > $i > $i > $o] :
! [Xx1: $i,Xy1: $i,Xx2: $i,Xy2: $i,Xu: $i,Xv: $i] :
( ( ( Xh @ Xx1 @ Xy1 @ Xu @ Xv )
& ( Xh @ Xx2 @ Xy2 @ Xu @ Xv ) )
=> ( ( Xx1 = Xx2 )
& ( Xy1 = Xy2 ) ) ) ) ) ).
thf(cCKB_EVEN_def,definition,
( cCKB_EVEN
= ( ^ [Xx: $i] :
( ( Xx
= ( s @ c1 ) )
| ( Xx
= ( s @ ( s @ ( s @ c1 ) ) ) )
| ( Xx
= ( s @ ( s @ ( s @ ( s @ ( s @ c1 ) ) ) ) ) )
| ( Xx
= ( s @ ( s @ ( s @ ( s @ ( s @ ( s @ ( s @ c1 ) ) ) ) ) ) ) ) ) ) ) ).
thf(cCKB_ODD_def,definition,
( cCKB_ODD
= ( ^ [Xx: $i] :
( ( Xx = c1 )
| ( Xx
= ( s @ ( s @ c1 ) ) )
| ( Xx
= ( s @ ( s @ ( s @ ( s @ c1 ) ) ) ) )
| ( Xx
= ( s @ ( s @ ( s @ ( s @ ( s @ ( s @ c1 ) ) ) ) ) ) ) ) ) ) ).
thf(cCKB_BLACK_def,definition,
( cCKB_BLACK
= ( ^ [Xu: $i,Xv: $i] :
( ( ( cCKB_ODD @ Xu )
& ( cCKB_ODD @ Xv ) )
| ( ( cCKB_EVEN @ Xu )
& ( cCKB_EVEN @ Xv ) ) ) ) ) ).
thf(cCKB_H_def,definition,
( cCKB_H
= ( ^ [Xx: $i,Xy: $i,Xu: $i,Xv: $i] :
( ( cCKB_BLACK @ Xx @ Xy )
& ( ( ( ( g @ ( s @ ( s @ Xx ) ) @ ( s @ Xy ) )
= c1 )
& ( Xu
= ( s @ ( s @ ( s @ Xx ) ) ) )
& ( Xv
= ( s @ Xy ) ) )
| ( ( ( g @ ( s @ ( s @ Xx ) ) @ ( s @ Xy ) )
= c2 )
& ( Xu
= ( s @ ( s @ Xx ) ) )
& ( Xv
= ( s @ ( s @ Xy ) ) ) )
| ( ( ( g @ ( s @ ( s @ Xx ) ) @ ( s @ Xy ) )
= c3 )
& ( Xu
= ( s @ Xx ) )
& ( Xv
= ( s @ Xy ) ) )
| ( ( ( g @ ( s @ ( s @ Xx ) ) @ ( s @ Xy ) )
= c4 )
& ( Xu
= ( s @ ( s @ Xx ) ) )
& ( Xv = Xy ) ) ) ) ) ) ).
thf(cL2500,conjecture,
cCKB_INJ @ cCKB_H ).
%------------------------------------------------------------------------------