TPTP Problem File: KRS156+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : KRS156+1 : TPTP v9.0.0. Released v3.1.0.
% Domain : Knowledge Representation (Semantic Web)
% Problem : DL Test: k_dum ABox test from DL98 systems comparison
% Version : Especial.
% English :
% Refs : [Bec03] Bechhofer (2003), Email to G. Sutcliffe
% : [TR+04] Tsarkov et al. (2004), Using Vampire to Reason with OW
% Source : [Bec03]
% Names : positive_description-logic-Manifest663 [Bec03]
% Status : Theorem
% Rating : 0.00 v6.1.0, 0.08 v6.0.0, 0.25 v5.5.0, 0.12 v5.4.0, 0.17 v5.3.0, 0.26 v5.2.0, 0.07 v5.0.0, 0.10 v4.1.0, 0.06 v4.0.1, 0.00 v3.7.0, 0.33 v3.5.0, 0.12 v3.4.0, 0.17 v3.3.0, 0.00 v3.2.0, 0.11 v3.1.0
% Syntax : Number of formulae : 146 ( 13 unt; 0 def)
% Number of atoms : 355 ( 0 equ)
% Maximal formula atoms : 8 ( 2 avg)
% Number of connectives : 241 ( 32 ~; 0 |; 77 &)
% ( 128 <=>; 4 =>; 0 <=; 0 <~>)
% Maximal formula depth : 6 ( 4 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 133 ( 133 usr; 0 prp; 1-2 aty)
% Number of functors : 3 ( 3 usr; 3 con; 0-0 aty)
% Number of variables : 228 ( 134 !; 94 ?)
% SPC : FOF_THM_RFO_NEQ
% Comments : Sean Bechhofer says there are some errors in the encoding of
% datatypes, so this problem may not be perfect. At least it's
% still representative of the type of reasoning required for OWL.
%------------------------------------------------------------------------------
%----Thing and Nothing
fof(axiom_0,axiom,
! [X] :
( cowlThing(X)
& ~ cowlNothing(X) ) ).
%----String and Integer disjoint
fof(axiom_1,axiom,
! [X] :
( xsd_string(X)
<=> ~ xsd_integer(X) ) ).
%----Equality cC10
fof(axiom_2,axiom,
! [X] :
( cC10(X)
<=> ? [Y0] : ra_Px50(X,Y0) ) ).
%----Equality cC10
fof(axiom_3,axiom,
! [X] :
( cC10(X)
<=> ( cC2xcomp(X)
& cC8xcomp(X) ) ) ).
%----Equality cC10xcomp
fof(axiom_4,axiom,
! [X] :
( cC10xcomp(X)
<=> ~ ? [Y] : ra_Px50(X,Y) ) ).
%----Equality cC100
fof(axiom_5,axiom,
! [X] :
( cC100(X)
<=> ( cC98xcomp(X)
& cC94(X) ) ) ).
%----Equality cC102
fof(axiom_6,axiom,
! [X] :
( cC102(X)
<=> ? [Y] :
( rR1(X,Y)
& cC100(Y) ) ) ).
%----Equality cC102
fof(axiom_7,axiom,
! [X] :
( cC102(X)
<=> ? [Y0] : ra_Px30(X,Y0) ) ).
%----Equality cC102xcomp
fof(axiom_8,axiom,
! [X] :
( cC102xcomp(X)
<=> ~ ? [Y] : ra_Px30(X,Y) ) ).
%----Equality cC104
fof(axiom_9,axiom,
! [X] :
( cC104(X)
<=> ( cC102xcomp(X)
& cC88(X) ) ) ).
%----Equality cC106
fof(axiom_10,axiom,
! [X] :
( cC106(X)
<=> ? [Y] :
( rR1(X,Y)
& cC104(Y) ) ) ).
%----Equality cC106
fof(axiom_11,axiom,
! [X] :
( cC106(X)
<=> ~ ? [Y] : ra_Px31(X,Y) ) ).
%----Equality cC106xcomp
fof(axiom_12,axiom,
! [X] :
( cC106xcomp(X)
<=> ? [Y0] : ra_Px31(X,Y0) ) ).
%----Equality cC108
fof(axiom_13,axiom,
! [X] :
( cC108(X)
<=> ? [Y0] : ra_Px32(X,Y0) ) ).
%----Equality cC108
fof(axiom_14,axiom,
! [X] :
( cC108(X)
<=> ( cC84(X)
& cC106xcomp(X) ) ) ).
%----Equality cC108xcomp
fof(axiom_15,axiom,
! [X] :
( cC108xcomp(X)
<=> ~ ? [Y] : ra_Px32(X,Y) ) ).
%----Equality cC110
fof(axiom_16,axiom,
! [X] :
( cC110(X)
<=> ( cC62(X)
& cC108xcomp(X) ) ) ).
%----Equality cC110
fof(axiom_17,axiom,
! [X] :
( cC110(X)
<=> ? [Y0] : ra_Px33(X,Y0) ) ).
%----Equality cC110xcomp
fof(axiom_18,axiom,
! [X] :
( cC110xcomp(X)
<=> ~ ? [Y] : ra_Px33(X,Y) ) ).
%----Equality cC112
fof(axiom_19,axiom,
! [X] :
( cC112(X)
<=> ~ ? [Y] : ra_Px43(X,Y) ) ).
%----Equality cC112
fof(axiom_20,axiom,
! [X] :
( cC112(X)
<=> ? [Y] :
( rR1(X,Y)
& cC110xcomp(Y) ) ) ).
%----Equality cC112xcomp
fof(axiom_21,axiom,
! [X] :
( cC112xcomp(X)
<=> ? [Y0] : ra_Px43(X,Y0) ) ).
%----Equality cC114
fof(axiom_22,axiom,
! [X] :
( cC114(X)
<=> ~ ? [Y] : ra_Px34(X,Y) ) ).
%----Equality cC114
fof(axiom_23,axiom,
! [X] :
( cC114(X)
<=> ? [Y] :
( rR1(X,Y)
& cC112(Y) ) ) ).
%----Equality cC114xcomp
fof(axiom_24,axiom,
! [X] :
( cC114xcomp(X)
<=> ? [Y0] : ra_Px34(X,Y0) ) ).
%----Equality cC116
fof(axiom_25,axiom,
! [X] :
( cC116(X)
<=> ( cTOP(X)
& cC114xcomp(X) ) ) ).
%----Equality cC118
fof(axiom_26,axiom,
! [X] :
( cC118(X)
<=> ? [Y] :
( rR1(X,Y)
& cC2xcomp(Y) ) ) ).
%----Equality cC118
fof(axiom_27,axiom,
! [X] :
( cC118(X)
<=> ? [Y0] : ra_Px36(X,Y0) ) ).
%----Equality cC118xcomp
fof(axiom_28,axiom,
! [X] :
( cC118xcomp(X)
<=> ~ ? [Y] : ra_Px36(X,Y) ) ).
%----Equality cC12
fof(axiom_29,axiom,
! [X] :
( cC12(X)
<=> ? [Y0] : ra_Px45(X,Y0) ) ).
%----Equality cC12
fof(axiom_30,axiom,
! [X] :
( cC12(X)
<=> ? [Y] :
( rR1(X,Y)
& cC10(Y) ) ) ).
%----Equality cC12xcomp
fof(axiom_31,axiom,
! [X] :
( cC12xcomp(X)
<=> ~ ? [Y] : ra_Px45(X,Y) ) ).
%----Equality cC120
fof(axiom_32,axiom,
! [X] :
( cC120(X)
<=> ? [Y] :
( rR1(X,Y)
& cC118xcomp(Y) ) ) ).
%----Equality cC122
fof(axiom_33,axiom,
! [X] :
( cC122(X)
<=> ( cC2xcomp(X)
& cC120(X) ) ) ).
%----Equality cC124
fof(axiom_34,axiom,
! [X] :
( cC124(X)
<=> ? [Y] :
( rR1(X,Y)
& cC2xcomp(Y) ) ) ).
%----Equality cC126
fof(axiom_35,axiom,
! [X] :
( cC126(X)
<=> ( cC2(X)
& cC124(X) ) ) ).
%----Equality cC128
fof(axiom_36,axiom,
! [X] :
( cC128(X)
<=> ~ ? [Y] : ra_Px40(X,Y) ) ).
%----Equality cC128
fof(axiom_37,axiom,
! [X] :
( cC128(X)
<=> ? [Y] :
( rR1(X,Y)
& cC126(Y) ) ) ).
%----Equality cC128xcomp
fof(axiom_38,axiom,
! [X] :
( cC128xcomp(X)
<=> ? [Y0] : ra_Px40(X,Y0) ) ).
%----Equality cC130
fof(axiom_39,axiom,
! [X] :
( cC130(X)
<=> ? [Y0] : ra_Px47(X,Y0) ) ).
%----Equality cC130
fof(axiom_40,axiom,
! [X] :
( cC130(X)
<=> ( cC2xcomp(X)
& cC128xcomp(X) ) ) ).
%----Equality cC130xcomp
fof(axiom_41,axiom,
! [X] :
( cC130xcomp(X)
<=> ~ ? [Y] : ra_Px47(X,Y) ) ).
%----Equality cC132
fof(axiom_42,axiom,
! [X] :
( cC132(X)
<=> ? [Y0] : ra_Px41(X,Y0) ) ).
%----Equality cC132
fof(axiom_43,axiom,
! [X] :
( cC132(X)
<=> ? [Y] :
( rR1(X,Y)
& cC130(Y) ) ) ).
%----Equality cC132xcomp
fof(axiom_44,axiom,
! [X] :
( cC132xcomp(X)
<=> ~ ? [Y] : ra_Px41(X,Y) ) ).
%----Equality cC134
fof(axiom_45,axiom,
! [X] :
( cC134(X)
<=> ( cC132xcomp(X)
& cC122(X) ) ) ).
%----Equality cC136
fof(axiom_46,axiom,
! [X] :
( cC136(X)
<=> ? [Y] :
( rR1(X,Y)
& cC134(Y) ) ) ).
%----Equality cC138
fof(axiom_47,axiom,
! [X] :
( cC138(X)
<=> ? [Y] :
( rR1(X,Y)
& cC136(Y) ) ) ).
%----Equality cC14
fof(axiom_48,axiom,
! [X] :
( cC14(X)
<=> ? [Y] :
( rR1(X,Y)
& cC12(Y) ) ) ).
%----Equality cC140
fof(axiom_49,axiom,
! [X] :
( cC140(X)
<=> ( cTOP(X)
& cC138(X) ) ) ).
%----Equality cC16
fof(axiom_50,axiom,
! [X] :
( cC16(X)
<=> ? [Y] :
( rR1(X,Y)
& cC2xcomp(Y) ) ) ).
%----Equality cC18
fof(axiom_51,axiom,
! [X] :
( cC18(X)
<=> ( cC16(X)
& cC2(X) ) ) ).
%----Equality cC2
fof(axiom_52,axiom,
! [X] :
( cC2(X)
<=> ~ ? [Y] : ra_Px1(X,Y) ) ).
%----Equality cC2xcomp
fof(axiom_53,axiom,
! [X] :
( cC2xcomp(X)
<=> ? [Y0] : ra_Px1(X,Y0) ) ).
%----Equality cC20
fof(axiom_54,axiom,
! [X] :
( cC20(X)
<=> ? [Y0] : ra_Px5(X,Y0) ) ).
%----Equality cC20
fof(axiom_55,axiom,
! [X] :
( cC20(X)
<=> ? [Y] :
( rR1(X,Y)
& cC18(Y) ) ) ).
%----Equality cC20xcomp
fof(axiom_56,axiom,
! [X] :
( cC20xcomp(X)
<=> ~ ? [Y] : ra_Px5(X,Y) ) ).
%----Equality cC22
fof(axiom_57,axiom,
! [X] :
( cC22(X)
<=> ( cC2xcomp(X)
& cC20xcomp(X) ) ) ).
%----Equality cC24
fof(axiom_58,axiom,
! [X] :
( cC24(X)
<=> ? [Y] :
( rR1(X,Y)
& cC22(Y) ) ) ).
%----Equality cC24
fof(axiom_59,axiom,
! [X] :
( cC24(X)
<=> ? [Y0] : ra_Px6(X,Y0) ) ).
%----Equality cC24xcomp
fof(axiom_60,axiom,
! [X] :
( cC24xcomp(X)
<=> ~ ? [Y] : ra_Px6(X,Y) ) ).
%----Equality cC26
fof(axiom_61,axiom,
! [X] :
( cC26(X)
<=> ( cC14(X)
& cC24xcomp(X) ) ) ).
%----Equality cC26
fof(axiom_62,axiom,
! [X] :
( cC26(X)
<=> ~ ? [Y] : ra_Px10(X,Y) ) ).
%----Equality cC26xcomp
fof(axiom_63,axiom,
! [X] :
( cC26xcomp(X)
<=> ? [Y0] : ra_Px10(X,Y0) ) ).
%----Equality cC28
fof(axiom_64,axiom,
! [X] :
( cC28(X)
<=> ? [Y] :
( rR1(X,Y)
& cC2xcomp(Y) ) ) ).
%----Equality cC28
fof(axiom_65,axiom,
! [X] :
( cC28(X)
<=> ~ ? [Y] : ra_Px49(X,Y) ) ).
%----Equality cC28xcomp
fof(axiom_66,axiom,
! [X] :
( cC28xcomp(X)
<=> ? [Y0] : ra_Px49(X,Y0) ) ).
%----Equality cC30
fof(axiom_67,axiom,
! [X] :
( cC30(X)
<=> ? [Y] :
( rR1(X,Y)
& cC28(Y) ) ) ).
%----Equality cC30
fof(axiom_68,axiom,
! [X] :
( cC30(X)
<=> ? [Y0] : ra_Px44(X,Y0) ) ).
%----Equality cC30xcomp
fof(axiom_69,axiom,
! [X] :
( cC30xcomp(X)
<=> ~ ? [Y] : ra_Px44(X,Y) ) ).
%----Equality cC32
fof(axiom_70,axiom,
! [X] :
( cC32(X)
<=> ? [Y0] : ra_Px9(X,Y0) ) ).
%----Equality cC32
fof(axiom_71,axiom,
! [X] :
( cC32(X)
<=> ? [Y] :
( rR1(X,Y)
& cC2xcomp(Y) ) ) ).
%----Equality cC32xcomp
fof(axiom_72,axiom,
! [X] :
( cC32xcomp(X)
<=> ~ ? [Y] : ra_Px9(X,Y) ) ).
%----Equality cC34
fof(axiom_73,axiom,
! [X] :
( cC34(X)
<=> ~ ? [Y] : ra_Px46(X,Y) ) ).
%----Equality cC34
fof(axiom_74,axiom,
! [X] :
( cC34(X)
<=> ( cC32xcomp(X)
& cC30(X) ) ) ).
%----Equality cC34xcomp
fof(axiom_75,axiom,
! [X] :
( cC34xcomp(X)
<=> ? [Y0] : ra_Px46(X,Y0) ) ).
%----Equality cC36
fof(axiom_76,axiom,
! [X] :
( cC36(X)
<=> ? [Y0] : ra_Px11(X,Y0) ) ).
%----Equality cC36
fof(axiom_77,axiom,
! [X] :
( cC36(X)
<=> ? [Y] :
( rR1(X,Y)
& cC34(Y) ) ) ).
%----Equality cC36xcomp
fof(axiom_78,axiom,
! [X] :
( cC36xcomp(X)
<=> ~ ? [Y] : ra_Px11(X,Y) ) ).
%----Equality cC38
fof(axiom_79,axiom,
! [X] :
( cC38(X)
<=> ( cC26xcomp(X)
& cC36xcomp(X) ) ) ).
%----Equality cC4
fof(axiom_80,axiom,
! [X] :
( cC4(X)
<=> ? [Y] :
( rR1(X,Y)
& cC2xcomp(Y) ) ) ).
%----Equality cC40
fof(axiom_81,axiom,
! [X] :
( cC40(X)
<=> ? [Y] :
( rR1(X,Y)
& cC2xcomp(Y) ) ) ).
%----Equality cC42
fof(axiom_82,axiom,
! [X] :
( cC42(X)
<=> ( cC2xcomp(X)
& cC40(X) ) ) ).
%----Equality cC44
fof(axiom_83,axiom,
! [X] :
( cC44(X)
<=> ? [Y] :
( rR1(X,Y)
& cC2xcomp(Y) ) ) ).
%----Equality cC44
fof(axiom_84,axiom,
! [X] :
( cC44(X)
<=> ? [Y0] : ra_Px15(X,Y0) ) ).
%----Equality cC44xcomp
fof(axiom_85,axiom,
! [X] :
( cC44xcomp(X)
<=> ~ ? [Y] : ra_Px15(X,Y) ) ).
%----Equality cC46
fof(axiom_86,axiom,
! [X] :
( cC46(X)
<=> ? [Y] :
( rR1(X,Y)
& cC44xcomp(Y) ) ) ).
%----Equality cC48
fof(axiom_87,axiom,
! [X] :
( cC48(X)
<=> ( cC42(X)
& cC46(X) ) ) ).
%----Equality cC50
fof(axiom_88,axiom,
! [X] :
( cC50(X)
<=> ? [Y] :
( rR1(X,Y)
& cC2xcomp(Y) ) ) ).
%----Equality cC52
fof(axiom_89,axiom,
! [X] :
( cC52(X)
<=> ( cC2(X)
& cC50(X) ) ) ).
%----Equality cC54
fof(axiom_90,axiom,
! [X] :
( cC54(X)
<=> ? [Y0] : ra_Px18(X,Y0) ) ).
%----Equality cC54
fof(axiom_91,axiom,
! [X] :
( cC54(X)
<=> ? [Y] :
( rR1(X,Y)
& cC52(Y) ) ) ).
%----Equality cC54xcomp
fof(axiom_92,axiom,
! [X] :
( cC54xcomp(X)
<=> ~ ? [Y] : ra_Px18(X,Y) ) ).
%----Equality cC56
fof(axiom_93,axiom,
! [X] :
( cC56(X)
<=> ( cC2xcomp(X)
& cC54xcomp(X) ) ) ).
%----Equality cC58
fof(axiom_94,axiom,
! [X] :
( cC58(X)
<=> ? [Y] :
( rR1(X,Y)
& cC56(Y) ) ) ).
%----Equality cC58
fof(axiom_95,axiom,
! [X] :
( cC58(X)
<=> ~ ? [Y] : ra_Px19(X,Y) ) ).
%----Equality cC58xcomp
fof(axiom_96,axiom,
! [X] :
( cC58xcomp(X)
<=> ? [Y0] : ra_Px19(X,Y0) ) ).
%----Equality cC6
fof(axiom_97,axiom,
! [X] :
( cC6(X)
<=> ( cC2(X)
& cC4(X) ) ) ).
%----Equality cC60
fof(axiom_98,axiom,
! [X] :
( cC60(X)
<=> ( cC48(X)
& cC58xcomp(X) ) ) ).
%----Equality cC60
fof(axiom_99,axiom,
! [X] :
( cC60(X)
<=> ? [Y0] : ra_Px20(X,Y0) ) ).
%----Equality cC60xcomp
fof(axiom_100,axiom,
! [X] :
( cC60xcomp(X)
<=> ~ ? [Y] : ra_Px20(X,Y) ) ).
%----Equality cC62
fof(axiom_101,axiom,
! [X] :
( cC62(X)
<=> ( cC38(X)
& cC60xcomp(X) ) ) ).
%----Equality cC64
fof(axiom_102,axiom,
! [X] :
( cC64(X)
<=> ? [Y] :
( rR1(X,Y)
& cC2xcomp(Y) ) ) ).
%----Equality cC66
fof(axiom_103,axiom,
! [X] :
( cC66(X)
<=> ( cC64(X)
& cC2(X) ) ) ).
%----Equality cC68
fof(axiom_104,axiom,
! [X] :
( cC68(X)
<=> ? [Y] :
( rR1(X,Y)
& cC2xcomp(Y) ) ) ).
%----Equality cC70
fof(axiom_105,axiom,
! [X] :
( cC70(X)
<=> ( cC2(X)
& cC68(X) ) ) ).
%----Equality cC72
fof(axiom_106,axiom,
! [X] :
( cC72(X)
<=> ? [Y] :
( rR1(X,Y)
& cC70(Y) ) ) ).
%----Equality cC74
fof(axiom_107,axiom,
! [X] :
( cC74(X)
<=> ( cC66(X)
& cC72(X) ) ) ).
%----Equality cC76
fof(axiom_108,axiom,
! [X] :
( cC76(X)
<=> ? [Y] :
( rR1(X,Y)
& cC2xcomp(Y) ) ) ).
%----Equality cC78
fof(axiom_109,axiom,
! [X] :
( cC78(X)
<=> ( cC2(X)
& cC76(X) ) ) ).
%----Equality cC8
fof(axiom_110,axiom,
! [X] :
( cC8(X)
<=> ? [Y] :
( rR1(X,Y)
& cC6(Y) ) ) ).
%----Equality cC8
fof(axiom_111,axiom,
! [X] :
( cC8(X)
<=> ? [Y0] : ra_Px2(X,Y0) ) ).
%----Equality cC8xcomp
fof(axiom_112,axiom,
! [X] :
( cC8xcomp(X)
<=> ~ ? [Y] : ra_Px2(X,Y) ) ).
%----Equality cC80
fof(axiom_113,axiom,
! [X] :
( cC80(X)
<=> ? [Y0] : ra_Px24(X,Y0) ) ).
%----Equality cC80
fof(axiom_114,axiom,
! [X] :
( cC80(X)
<=> ? [Y] :
( rR1(X,Y)
& cC78(Y) ) ) ).
%----Equality cC80xcomp
fof(axiom_115,axiom,
! [X] :
( cC80xcomp(X)
<=> ~ ? [Y] : ra_Px24(X,Y) ) ).
%----Equality cC82
fof(axiom_116,axiom,
! [X] :
( cC82(X)
<=> ? [Y] :
( rR1(X,Y)
& cC80xcomp(Y) ) ) ).
%----Equality cC84
fof(axiom_117,axiom,
! [X] :
( cC84(X)
<=> ( cC82(X)
& cC74(X) ) ) ).
%----Equality cC86
fof(axiom_118,axiom,
! [X] :
( cC86(X)
<=> ? [Y] :
( rR1(X,Y)
& cC2xcomp(Y) ) ) ).
%----Equality cC88
fof(axiom_119,axiom,
! [X] :
( cC88(X)
<=> ( cC86(X)
& cC2(X) ) ) ).
%----Equality cC90
fof(axiom_120,axiom,
! [X] :
( cC90(X)
<=> ? [Y] :
( rR1(X,Y)
& cC2xcomp(Y) ) ) ).
%----Equality cC92
fof(axiom_121,axiom,
! [X] :
( cC92(X)
<=> ( cC2(X)
& cC90(X) ) ) ).
%----Equality cC94
fof(axiom_122,axiom,
! [X] :
( cC94(X)
<=> ? [Y] :
( rR1(X,Y)
& cC92(Y) ) ) ).
%----Equality cC96
fof(axiom_123,axiom,
! [X] :
( cC96(X)
<=> ? [Y] :
( rR1(X,Y)
& cC2xcomp(Y) ) ) ).
%----Equality cC98
fof(axiom_124,axiom,
! [X] :
( cC98(X)
<=> ( cC2(X)
& cC96(X) ) ) ).
%----Equality cC98
fof(axiom_125,axiom,
! [X] :
( cC98(X)
<=> ? [Y0] : ra_Px29(X,Y0) ) ).
%----Equality cC98xcomp
fof(axiom_126,axiom,
! [X] :
( cC98xcomp(X)
<=> ~ ? [Y] : ra_Px29(X,Y) ) ).
%----Equality cTEST
fof(axiom_127,axiom,
! [X] :
( cTEST(X)
<=> ( cC140(X)
& cC116(X) ) ) ).
%----iV5475
fof(axiom_128,axiom,
cTOP(iV5475) ).
%----iV5475
fof(axiom_129,axiom,
cowlThing(iV5475) ).
%----iV5475
fof(axiom_130,axiom,
cC114xcomp(iV5475) ).
%----iV5475
fof(axiom_131,axiom,
cTEST(iV5475) ).
%----iV5475
fof(axiom_132,axiom,
! [X] :
( rR1(iV5475,X)
=> cC112xcomp(X) ) ).
fof(axiom_133,axiom,
rR1(iV5475,iV5476) ).
%----iV5476
fof(axiom_134,axiom,
cowlThing(iV5476) ).
%----iV5478
fof(axiom_135,axiom,
cC12xcomp(iV5478) ).
%----iV5478
fof(axiom_136,axiom,
cC30xcomp(iV5478) ).
%----iV5478
fof(axiom_137,axiom,
cC2(iV5478) ).
%----iV5478
fof(axiom_138,axiom,
cowlThing(iV5478) ).
%----iV5478
fof(axiom_139,axiom,
cC118xcomp(iV5478) ).
%----iV5478
fof(axiom_140,axiom,
! [X] :
( rR1(iV5478,X)
=> cC2(X) ) ).
%----iV5478
fof(axiom_141,axiom,
cC130xcomp(iV5478) ).
%----iV5478
fof(axiom_142,axiom,
cC34xcomp(iV5478) ).
%----iV5478
fof(axiom_143,axiom,
! [X] :
( rR1(iV5478,X)
=> cC10xcomp(X) ) ).
%----iV5478
fof(axiom_144,axiom,
! [X] :
( rR1(iV5478,X)
=> cC28xcomp(X) ) ).
%----Thing and Nothing
%----String and Integer disjoint
%----iV5475
%----iV5475
%----iV5475
%----iV5475
fof(the_axiom,conjecture,
( ! [X] :
( cowlThing(X)
& ~ cowlNothing(X) )
& ! [X] :
( xsd_string(X)
<=> ~ xsd_integer(X) )
& cC116(iV5475)
& cC140(iV5475)
& cowlThing(iV5475)
& cC138(iV5475) ) ).
%------------------------------------------------------------------------------