TPTP Problem File: KRS104+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : KRS104+1 : TPTP v9.0.0. Released v3.1.0.
% Domain : Knowledge Representation (Semantic Web)
% Problem : DL Test: fact1.1
% Version : Especial.
% English : If a, b and c are disjoint, then:
% (a and b) or (b and c) or (c and a)
% is unsatisfiable.
% Refs : [Bec03] Bechhofer (2003), Email to G. Sutcliffe
% : [TR+04] Tsarkov et al. (2004), Using Vampire to Reason with OW
% Source : [Bec03]
% Names : inconsistent_description-logic-Manifest601 [Bec03]
% Status : Unsatisfiable
% Rating : 0.00 v6.4.0, 0.25 v6.3.0, 0.00 v6.2.0, 0.25 v6.1.0, 0.00 v3.1.0
% Syntax : Number of formulae : 24 ( 1 unt; 0 def)
% Number of atoms : 53 ( 0 equ)
% Maximal formula atoms : 4 ( 2 avg)
% Number of connectives : 38 ( 9 ~; 0 |; 7 &)
% ( 20 <=>; 2 =>; 0 <=; 0 <~>)
% Maximal formula depth : 5 ( 4 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 26 ( 26 usr; 0 prp; 1-2 aty)
% Number of functors : 1 ( 1 usr; 1 con; 0-0 aty)
% Number of variables : 37 ( 23 !; 14 ?)
% SPC : FOF_UNS_RFO_NEQ
% Comments : Sean Bechhofer says there are some errors in the encoding of
% datatypes, so this problem may not be perfect. At least it's
% still representative of the type of reasoning required for OWL.
%------------------------------------------------------------------------------
%----Thing and Nothing
fof(axiom_0,axiom,
! [X] :
( cowlThing(X)
& ~ cowlNothing(X) ) ).
%----String and Integer disjoint
fof(axiom_1,axiom,
! [X] :
( xsd_string(X)
<=> ~ xsd_integer(X) ) ).
%----Equality cUnsatisfiable
fof(axiom_2,axiom,
! [X] :
( cUnsatisfiable(X)
<=> ~ ? [Y] : ra_Px5(X,Y) ) ).
%----Equality cUnsatisfiablexcomp
fof(axiom_3,axiom,
! [X] :
( cUnsatisfiablexcomp(X)
<=> ( ca_Cx7(X)
& ca_Cx8(X)
& ca_Cx6(X) ) ) ).
%----Equality cUnsatisfiablexcomp
fof(axiom_4,axiom,
! [X] :
( cUnsatisfiablexcomp(X)
<=> ? [Y0] : ra_Px5(X,Y0) ) ).
%----Super ca
fof(axiom_5,axiom,
! [X] :
( ca(X)
=> ca_Cx1(X) ) ).
%----Equality cb
fof(axiom_6,axiom,
! [X] :
( cb(X)
<=> ? [Y0] : ra_Px3(X,Y0) ) ).
%----Super cb
fof(axiom_7,axiom,
! [X] :
( cb(X)
=> ccxcomp(X) ) ).
%----Equality cbxcomp
fof(axiom_8,axiom,
! [X] :
( cbxcomp(X)
<=> ~ ? [Y] : ra_Px3(X,Y) ) ).
%----Equality cc
fof(axiom_9,axiom,
! [X] :
( cc(X)
<=> ? [Y0] : ra_Px2(X,Y0) ) ).
%----Equality ccxcomp
fof(axiom_10,axiom,
! [X] :
( ccxcomp(X)
<=> ~ ? [Y] : ra_Px2(X,Y) ) ).
%----Equality ca_Cx1
fof(axiom_11,axiom,
! [X] :
( ca_Cx1(X)
<=> ( cbxcomp(X)
& ccxcomp(X) ) ) ).
%----Equality ca_Cx1
fof(axiom_12,axiom,
! [X] :
( ca_Cx1(X)
<=> ? [Y0] : ra_Px1(X,Y0) ) ).
%----Equality ca_Cx1xcomp
fof(axiom_13,axiom,
! [X] :
( ca_Cx1xcomp(X)
<=> ~ ? [Y] : ra_Px1(X,Y) ) ).
%----Equality ca_Cx6
fof(axiom_14,axiom,
! [X] :
( ca_Cx6(X)
<=> ~ ? [Y] : ra_Px6(X,Y) ) ).
%----Equality ca_Cx6xcomp
fof(axiom_15,axiom,
! [X] :
( ca_Cx6xcomp(X)
<=> ( ca(X)
& cb(X) ) ) ).
%----Equality ca_Cx6xcomp
fof(axiom_16,axiom,
! [X] :
( ca_Cx6xcomp(X)
<=> ? [Y0] : ra_Px6(X,Y0) ) ).
%----Equality ca_Cx7
fof(axiom_17,axiom,
! [X] :
( ca_Cx7(X)
<=> ? [Y0] : ra_Px7(X,Y0) ) ).
%----Equality ca_Cx7xcomp
fof(axiom_18,axiom,
! [X] :
( ca_Cx7xcomp(X)
<=> ( cc(X)
& ca(X) ) ) ).
%----Equality ca_Cx7xcomp
fof(axiom_19,axiom,
! [X] :
( ca_Cx7xcomp(X)
<=> ~ ? [Y] : ra_Px7(X,Y) ) ).
%----Equality ca_Cx8
fof(axiom_20,axiom,
! [X] :
( ca_Cx8(X)
<=> ~ ? [Y] : ra_Px8(X,Y) ) ).
%----Equality ca_Cx8xcomp
fof(axiom_21,axiom,
! [X] :
( ca_Cx8xcomp(X)
<=> ? [Y0] : ra_Px8(X,Y0) ) ).
%----Equality ca_Cx8xcomp
fof(axiom_22,axiom,
! [X] :
( ca_Cx8xcomp(X)
<=> ( cc(X)
& cb(X) ) ) ).
%----i2003_11_14_17_20_50869
fof(axiom_23,axiom,
cUnsatisfiable(i2003_11_14_17_20_50869) ).
%------------------------------------------------------------------------------