
IJCAR 2008

4th International Joint Conference on Automated Reasoning

Sydney, Australia, August 10–15, 2008

CASC-J4

The 4th IJCAR
ATP System Competition

Geoff Sutcliffe, Panel, Entrants

August 13

The 4th IJCAR ATP System Competition
(CASC-J4)

Geoff Sutcliffe
University of Miami, USA

Abstract

The CADE ATP System Computer (CASC) evaluates the performance of sound, fully automatic,
classical first-order logic, ATP systems. The evaluation is in terms of the number of problems solved,
the number of acceptable proofs and models produced, and the average runtime for problems solved,
in the context of a bounded number of eligible problems chosen from the TPTP problem library, and
a specified time limit for each solution attempt. The 4th IJCAR ATP System Competition (CASC-
J4) was held on 13th August 2008. The design of the competition and it’s rules, and information
regarding the competing systems, are provided in this report.

1 Introduction

The CADE conferences are the major forum for the presentation of new research in all aspects of au-
tomated deduction. In order to stimulate ATP research and system development, and to expose ATP
systems within and beyond the ATP community, the CADE ATP System Competition (CASC) is held
at each CADE conference. CASC-J4 was held on 13th August 2008, as part of the 4th International
Joint Conference on Automated Reasoning1, in Sydney, Australia. It is the thirteenth competition in
the CASC series (lucky for some) [SS97a, SS98d, SS99, Sut00b, Sut01b, SSP02, SS03, SS04, Sut05b,
Sut06b, Sut07b, Sut08].

CASC evaluates the performance of sound, fully automatic, classical first-order logic, ATP systems.
The evaluation is in terms of:

• the number of problems solved,
• the number of acceptable proofs and models produced, and
• the average runtime for problems solved;

in the context of:

• a bounded number of eligible problems, chosen from the TPTP problem library [SS98c], and
• specified time limits on solution attempts.

Twenty-seven ATP systems and variants, listed in Table 1, entered into the various competition and
demonstration divisions. The winners of the CASC-21 (the previous CASC) divisions were automat-
ically entered into those divisions, to provide benchmarks against which progress can be judged (the
competition archive provides access to the systems’ executables and source code).

The design and procedures of this CASC evolved from those of previous CASCs [SS97c, SS97b,
SS98a, SS98b, Sut99, Sut00a, Sut01a, Sut02, Sut03, Sut04, Sut05a, Sut06a, Sut07a]. Important changes
for this CASC were:

• The LTB - Large Theory Batch - division was added. Each category of this division uses a theory
in which there are many functors and predicates, many axioms of which typically only a few are
required for the proof of a theorem, and many theorems to be proved using a common core set of
axioms. The problems of each category are provided to the ATP systems as a batch, allowing the

1CADE was a constituent conference of IJCAR, hence CASC-“J4”.

1

CASC-J4 Geoff Sutcliffe

Table
1:T

he
A

T
P

system
s

and
entrants

A
T

P
System

D
ivisions

E
ntrants

A
ffiliation

C
H

ew
T

PT
P

1.0
FN

T
(dem

o)
E

ric
M

cG
regor(C

hristopherLynch)
C

larkson
U

niversity
D

arw
in

1.3
E

PR
C

A
SC

C
A

SC
-21

E
P

R
w

inner
E

1.0pre
FO

F
FN

T
C

N
F

SA
T

E
PR

U
E

Q
LT

B
Stephan

Schulz
Technische

U
niversitätM

ünchen
E

P
1.0pre

FO
F
∗

LT
B
∗

E
1.0pre

variant
E

-D
arw

in
1.0

C
N

F
E

PR
B

jörn
Pelzer

U
niversity

K
oblenz-L

andau
E

-K
R

H
yper1.1

FO
F

FN
T

C
N

F
SA

T
E

PR
LT

B
B

jörn
Pelzer(PeterB

aum
gartner,

U
niversity

K
oblenz-L

andau
(N

IC
TA

,
A

lexanderFuchs,C
esare

Tinelli)
T

he
U

niversity
ofIow

a)
E

quinox
3.0

FO
F

C
N

F
U

E
Q

K
oen

C
laessen

C
halm

ers
U

niversity
ofTechnology

Infinox
0.1

FN
T

SA
T

(dem
o)

K
oen

C
laessen

(A
nn

L
illieström

)
C

halm
ers

U
niversity

ofTechnology
iProver0.5

FO
F

FN
T

C
N

F
SA

T
E

PR
LT

B
K

onstantin
K

orovin
T

he
U

niversity
ofM

anchester
M

aL
A

R
ea

0.3
LT

B
∗

JosefU
rban

C
harles

U
niversity

in
Prague

M
etaProver1.0

FN
T

SA
T

M
atthew

Streeter
C

arnegie
M

ellon
U

niversity
M

etis
2.1

FO
F
∗

FN
T
∗

C
N

F
SA

T
E

PR
U

E
Q

LT
B
∗

Joe
H

urd
G

alois,Inc.
M

uscadet3.0
FO

F
∗

LT
B
∗

D
om

inique
Pastre

U
niversité

R
ené

D
escartes

Paris-5
O

SH
L

-S
0.1

FO
F

FN
T

C
N

F
E

PR
H

ao
X

u
(D

avid
Plaisted)

U
niversity

ofN
orth

C
arolina

atC
hapelH

ill
O

tter3.3
FO

F
C

N
F

U
E

Q
C

A
SC

(W
illiam

M
cC

une)
C

A
SC

(A
rgonne

N
ationalL

aboratory)
Paradox

1.3
SA

T
C

A
SC

C
A

SC
-21

SAT
w

inner
Paradox

2.2
FN

T
∗

C
A

SC
C

A
SC

-21
F

N
T
∗

w
inner

Paradox
3.0

FN
T
∗

SA
T

E
PR

K
oen

C
laessen

C
halm

ers
U

niversity
ofTechnology

randoC
oP

1.1
FO

F
∗

LT
B
∗

Jens
O

tten
(T

hom
as

R
aths)

U
niversity

ofPotsdam
SInE

0.3
LT

B
∗

K
rystofH

oder
C

harles
U

niversity
in

Prague
SInE

-V
D

0.3
LT

B
(dem

o)
K

rystofH
oder

C
harles

U
niversity

in
Prague

V
am

pire
8.1

C
N

F
C

A
SC

C
A

SC
-21

C
N

F
w

inner
V

am
pire

9.0
FO

F
∗

C
A

SC
C

A
SC

-21
F

O
F
∗

w
inner

V
am

pire
10.0

FO
F
∗

C
N

F
E

PR
U

E
Q

LT
B
∗

A
ndreiVoronkov

U
niversity

ofM
anchester

W
aldm

eister806
U

E
Q

C
A

SC
C

A
SC

-21
U

E
Q

w
inner

w
gandalf0.98

C
N

F
E

PR
U

E
Q

LT
B
∗

TanelTam
m

et
Tallinn

U
niversity

ofTechnology
Z

enon
0.5.0

FO
F
∗

D
am

ien
D

oligez
IN

R
IA

A
∗

superscripton
a

division
indicates

participation
in

the
division’s

proof/m
odelclass

-see
Section

2.

2

CASC-J4 Geoff Sutcliffe

ATP systems to load and preprocess the common core set of axioms just once, and to share logical
and control results between proof searches. Articulate Software provided $3000 of prize money
for the SMO category of the LTB division.

• The FPE category - FOF Pure Equality - was split off from the FEQ category.
• The CNF proof class and SAT model class were discontinued.
• The distinguished strings output to indicate what solution has been found, or that no conclusion

has been reached, had to be different for:
– Proved conjectures of FOF problems
– Disproved conjectures of FOF problems
– Unsatisfiable sets of formulae (FOF problems without conjectures) and unsatisfiable set of

clauses (CNF problems)
– Satisfiable sets of formulae (FOF problems without conjectures) and satisfiable set of clauses

(CNF problems)

• The distinguished strings output to delimit the start and end of proofs/models had to be different
for:

– Proofs (SZS output forms Proof, Refutation, CNFRefutation)
– Models (SZS output forms Model, FiniteModel, InfiniteModel, Saturation)

• An open source license is explicitly encouraged for entered systems.

The competition organizer is Geoff Sutcliffe. The competition is overseen by a panel of knowledge-
able researchers who are not participating in the event; the panel members were Alessandro Armando,
Christoph Benzmüller, and John Slaney. The rules, specifications, and deadlines are absolute. Only the
panel has the right to make exceptions. The competition was run on computers provided by the Depart-
ment of Computer Science at the University of Manchester. The CASC-J4 WWW site provides access
to resources used before, during, and after the event: http://www.tptp.org/CASC/J4

2 Divisions

CASC is run in divisions according to problem and system characteristics. There are competition divi-
sions in which systems are explicitly ranked, and a demonstration division in which systems demonstrate
their abilities without being formally ranked. Some divisions are further divided into problem categories,
which make it possible to analyze, at a more fine grained level, which systems work well for what types
of problems. The problem categories have no effect on the competition rankings, which are made at only
the division level.

2.1 The Competition Divisions

The competition divisions are open to ATP systems that meet the required system properties described
in Section 6.1. Systems that rely essentially on running other ATP systems without adding value are
deprecated; the competition panel may disallow or move such systems to the demonstration division.

Each competition division uses problems that have certain logical, language, and syntactic charac-
teristics, so that the ATP systems that compete in the division are, in principle, able to attempt all the
problems in the division.

The FOF division: First-order form non-propositional theorems (axioms with a provable conjecture).
The FOF division has two problem categories:

• The FNE category: FOF with No Equality
• The FEQ category: FOF with some (but not pure) Equality

3

http://www.tptp.org/CASC/J4

CASC-J4 Geoff Sutcliffe

• The FPE category: FOF Pure Equality

The FNT division: First-order form non-propositional non-theorems (axioms with an unprovable
conjecture, and satisfiable axioms sets). The FNT division has two problem categories:

• The FNN category: FNT with no Equality
• The FNQ category: FNT with Equality

The CNF division: Clause normal form really non-propositional theorems (unsatisfiable clause sets),
but not unit equality problems (see the UEQ division below). Really non-propositional means with an
infinite Herbrand universe. The CNF division has five problem categories:

• The HNE category: Horn with No Equality
• The HEQ category: Horn with some (but not pure) Equality
• The NNE category: Non-Horn with No Equality
• The NEQ category: Non-Horn with some (but not pure) Equality
• The PEQ category: Pure Equality

The SAT division: Clause normal form really non-propositional non-theorems (satisfiable clause
sets). The SAT division has two problem categories:

• The SNE category: SAT with No Equality
• The SEQ category: SAT with Equality

The EPR division: Effectively propositional clause normal form theorems and non-theorems (clause
sets). Effectively propositional means non-propositional with a finite Herbrand Universe. The EPR
division has two problem categories:

• The EPT category: Effectively Propositional Theorems (unsatisfiable clause sets)
• The EPS category: Effectively Propositional non-theorems (Satisfiable clause sets)

The UEQ division: Unit equality clause normal form really non-propositional theorems (unsatisfi-
able clause sets).

The LTB division: First-order form non-propositional theorems (axioms with a provable conjecture)
from large theories, presented to the ATP systems in batches. A large theory has many functors and
predicates, has many axioms of which typically only a few are required for the proof of a theorem,
and many theorems to be proved using a common core set of axioms (but not all of the common core
axioms are in every problem). The batch presentation allows the ATP systems to load and preprocess the
common core set of axioms just once, and to share logical and control results between proof searches.
The LTB division has three problem categories:

• The CYC category: Problems taken from the Cyc contribution to the CSR domain of the TPTP.
These are problems CSR025 to CSR074.

• The MZR category: Problems taken from the Mizar Problems for Theorem Proving (MPTP)
contribution to the TPTP. These are problems ALG214 to ALG234, CAT021 to CAT037, GRP618 to
GRP653, LAT282 to LAT380, SEU406 to SEU451, and TOP023 to TOP048.

• The SMO category: Problems taken from the Suggested Upper Merged Ontology (SUMO) con-
tribution to the CSR domain of the TPTP. These are problems CSR075 to CSR109.

Section 3.2 explains what problems are eligible for use in each division and category. Section 4
explains how the systems are ranked in each division.

4

CASC-J4 Geoff Sutcliffe

2.2 The Demonstration Division

ATP systems that cannot run in the competition divisions for any reason can be entered into the demon-
stration division. Demonstration division systems can run on the competition computers, or the comput-
ers can be supplied by the entrant. Computers supplied by the entrant may be brought to CASC, or may
be accessed via the internet.

The entry specifies which competition divisions’ problems are to be used. The results are presented
along with the competition divisions’ results, but may not be comparable with those results. The systems
are not ranked and no prizes are awarded.

3 Infrastructure

3.1 Computers

The non-LTB division computers are Dell computers, each having:
• Intel Core 2 Duo E4600, 2.4GHz CPU
• 1GB RAM
• Linux 2.6 operating system

The LTB division computers are Hewlett-Packard computers, each having:
• Intel Pentium 4, 2.80GHz CPU
• 1GB RAM
• Linux 2.6 operating system

3.2 Problems

3.2.1 Problem Selection

The problems were from the TPTP problem library, version v3.5.0. The TPTP version used for the
competition is not released until after the system delivery deadline, so that new problems have not seen
by the entrants.

The problems have to meet certain criteria to be eligible for selection:
• The TPTP uses system performance data to compute problem difficulty ratings, and from the

ratings classifies problems as one of [SS01]:
– Easy: Solvable by all state-of-the-art ATP systems
– Difficult: Solvable by some state-of-the-art ATP systems
– Unsolved: Solvable by no ATP systems
– Open: Theoremhood unknown

Difficult problems with a rating in the range 0.21 to 0.99 are eligible. Problems of lesser and
greater difficulty ratings might also be eligible in some divisions. Performance data from systems
submitted by the system submission deadline is used for computing the problem ratings for the
TPTP version used for the competition.

• The TPTP distinguishes versions of problems as one of standard, incomplete, augmented, especial,
or biased. All except biased problems are eligible.

The problems used are randomly selected from the eligible problems at the start of the competition,
based on a seed supplied by the competition panel.

• The selection is constrained so that no division or category contains an excessive number of very
similar problems.

5

CASC-J4 Geoff Sutcliffe

• The selection mechanism is biased to select problems that are new in the TPTP version used, until
50% of the problems in each category have been selected, after which random selection (from old
and new problems) continues. The actual percentage of new problems used depends on how many
new problems are eligible and the limitation on very similar problems.

3.2.2 Number of Problems

The minimal numbers of problems that have to be used in each division and category, to ensure sufficient
confidence in the competition results, are determined from the numbers of eligible problems in each
division and category [GS96] (the competition organizers have to ensure that there is sufficient CPU
time available to run the ATP systems on this minimal number of problems). The minimal numbers of
problems is used in determining the CPU time limit imposed on each solution attempt - see Section 3.3.

A lower bound on the total number of problems to be used is determined from the number of com-
puters available, the time allocated to the competition, the number of ATP systems to be run on the
competition computers over all the divisions, and the CPU time limit, according to the following rela-
tionship:

NumberO f Problems =
NumberO fComputers∗TimeAllocated

NumberO f AT PSystems∗CPUTimeLimit

It is a lower bound on the total number of problems because it assumes that every system uses all of
the CPU time limit for each problem. Since some solution attempts succeed before the CPU time limit
is reached, more problems can be used.

The numbers of problems used in the categories in the various divisions is (roughly) proportional
to the numbers of eligible problems than can be used in the categories, after taking into account the
limitation on very similar problems.

The numbers of problems used in each division and category are determined according to the judge-
ment of the competition organizers.

3.2.3 Problem Preparation, non-LTB divisions

In order to ensure that no system receives an advantage or disadvantage due to the specific presentation
of the problems in the TPTP, the tptp2X utility (distributed with the TPTP) is used to:

• rename all predicate and function symbols to meaningless symbols
• randomly reorder the clauses and literals in CNF problems
• randomly reorder the formulae in FOF problems
• randomly reverse the equalities in UEQ problems
• remove equality axioms that are not needed by the ATP systems
• add equality axioms that are needed by the ATP systems
• output the problems in the formats required by the ATP systems. (The clause type information,

one of axiom, hypothesis, or conjecture, may be included in the final output of each formula.)

Further, to prevent systems from recognizing problems from their file names, symbolic links are
made to the selected problems, using names of the form CCCNNN-1.p for the symbolic links, with NNN
running from 001 to the number of problems in the respective division or category. The problems are
specified to the ATP systems using the symbolic link names.

In the demonstration division the same problems are used as for the competition divisions, with the
same tptp2X transformations applied. However, the original file names are retained.

6

CASC-J4 Geoff Sutcliffe

3.2.4 Problem Preparation, LTB division

The problems are in their original TPTP form (which may provide information that helps find solutions),
with include directives. There is consistent symbol usage between problems in each category, but there
may not be consistent axiom naming between problems (although there obviously is for axioms from the
same included file)

3.3 Resource Limits

In the competition divisions, CPU and wall clock time limits are imposed. A minimal CPU time limit
of 240 seconds per problem is used. The maximal CPU time limit per problem is determined using the
relationship used for determining the number of problems, with the minimal number of problems as the
NumberO f Roblems. The CPU time limit is chosen as a reasonable value within the range allowed, and
is announced at the competition. The wall clock time limit is imposed in addition to the CPU time limit,
to limit very high memory usage that causes swapping. The wall clock time limit is double the CPU time
limit. In the non-LTB competition divisions the time limits are imposed individually on each solution
attempt. In the LTB division the total time limits (the individual time limits multiplied by the number of
problems) are imposed on each category.

In the demonstration division, each entrant can choose to use either a CPU or a wall clock time limit,
whose value is the CPU time limit of the competition divisions.

4 System Evaluation

For each ATP system, for each problem, three items of data are recorded: whether or not a solution was
found, the CPU time taken, and whether or not a solution (proof or model) was output on stdout. The
systems are ranked from this performance data. All the divisions have an assurance ranking class, ranked
according to the number of problems solved (a “yes” output, giving an assurance of the existence of
a proof/model). The FOF, FNT, and LTB divisions additionally have and a proof/model ranking class,
ranked according to the number of problems solved with an acceptable proof/model output. Ties are
broken according to the average CPU times over problems solved. All systems are automatically ranked
in the assurance classes, and are ranked in the proof/model classes if they output acceptable proofs/mod-
els. A system that wins a proof/model ranking class might also win the corresponding assurance ranking
class. In the competition divisions class winners are announced and prizes are awarded.

• Articulate Software has provided $3000 of prize money for the SMO category of the LTB division.
(Employees of Articulate Sofware, its subcontractors, and funded partners, are not eligible for this
prize money.) In each ranking class the winner will receive $750, the second place $500, and the
third place $250.

The competition panel decides whether or not the systems’ proofs and models are acceptable for the
proof/model ranking classes. The criteria include:

• Derivations must be complete, starting at formulae from the problem, and ending at the conjecture
(for axiomatic proofs) or a f alse formula (for proofs by contradiction, including CNF refutations).

• For proofs of FOF problems by CNF refutation, the conversion from FOF to CNF must be ade-
quately documented.

• Derivations must show only relevant inference steps.
• Inference steps must document the parent formulae, the inference rule used, and the inferred for-

mula.

7

CASC-J4 Geoff Sutcliffe

• Inference steps must be reasonably fine-grained.
• In the LTB division the proofs must be in TPTP format.
• An unsatisfiable set of ground instances of clauses is acceptable for establishing the unsatisfiability

of a set of clauses.
• Models must be complete, documenting the domain, function maps, and predicate maps. The do-

main, function maps, and predicate maps may be specified by explicit ground lists (of mappings),
or by any clear, terminating algorithm.

In the assurance ranking classes the ATP systems are not required to output solutions (proofs or
models). However, systems that do output solutions to stdout are highlighted in the presentation of
results.

If a system is found to be unsound during or after the competition, but before the competition report
is published, and it cannot be shown that the unsoundness did not manifest itself in the competition, then
the system is retrospectively disqualified. At some time after the competition, all high ranking systems in
each division are tested over the entire TPTP. This provides a final check for soundness (see Section 6.1
regarding soundness checking before the competition). At some time after the competition, the proofs
and models from the winners of the proof/model ranking classes are checked by the panel. If any of the
proofs or models are unacceptable, i.e., they are significantly worse than the samples provided, then that
system is retrospectively disqualified. All disqualifications are explained in the competition report.

5 System Entry

To be entered into CASC, systems have to be registered using the CASC system registration form. No
registrations are accepted after the registration deadline. For each system entered, an entrant has to be
nominated to handle all issues (including execution difficulties) arising before and during the competi-
tion. The nominated entrant must formally register for CASC. However, it is not necessary for entrants
to physically attend the competition.

Systems can be entered at only the division level, and can be entered into more than one division
(a system that is not entered into a competition division is assumed to perform worse than the entered
systems, for that type of problem - wimping out is not an option). Entering many similar versions of
the same system is deprecated, and entrants may be required to limit the number of system versions that
they enter. The division winners from the previous CASC are automatically entered into their divisions,
to provide benchmarks against which progress can be judged.

It is assumed that each entrant has read the WWW pages related to the competition, and has complied
with the competition rules. Non-compliance with the rules could lead to disqualification. A “catch-all”
rule is used to deal with any unforseen circumstances: No cheating is allowed. The panel is allowed to
disqualify entrants due to unfairness, and to adjust the competition rules in case of misuse.

5.1 System Description

A system description has to be provided for each ATP system entered, using the HTML schema supplied
on the CASC WWW site. The schema has the following sections:

• Architecture. This section introduces the ATP system, and describes the calculus and inference
rules used.

• Strategies. This section describes the search strategies used, why they are effective, and how
they are selected for given problems. Any strategy tuning that is based on specific problems’
characteristics must be clearly described (and justified in light of the tuning restrictions described
in Section 6.1).

8

CASC-J4 Geoff Sutcliffe

• Implementation. This section describes the implementation of the ATP system, including the
programming language used, important internal data structures, and any special code libraries
used.

• Expected competition performance. This section makes some predictions about the performance
of the ATP system in each of the divisions and categories in which the system is competing.

• References.

The system description has to be emailed to the competition organizers by the system description
deadline. The system descriptions, along with information regarding the competition design and proce-
dures, form the proceedings for the competition.

5.2 Sample Solutions

For systems in the proof/model classes representative sample solutions must be emailed to the competi-
tion organizers before the sample solutions deadline. Proof samples for the FOF and LTB proof classes
must include a proof for SYN075+1. Model samples for the the FNT model class must include models
for MGT019+2 and SWV010+1. The sample solutions must illustrate the use of all inference rules. A key
must be provided if any non-obvious abbreviations for inference rules or other information are used.

6 System Requirements

6.1 System Properties

Systems are required to have the following properties:

• Systems have to run on a single locally provided standard UNIX computer (the competition com-
puters - see Section 3.1). ATP systems that cannot run on the competition computers can be entered
into the demonstration division.

• Systems must be fully automatic, i.e., any command line switches have to be the same for all
problems.

• Systems must be sound. At some time before the competition all the systems in the competition
divisions are tested for soundness. Non-theorems are submitted to the systems in the FOF, CNF,
EPR, UEQ, and LTB divisions, and theorems are submitted to the systems in the FNT, SAT and
EPR divisions. Finding a proof of a non-theorem or a disproof of a theorem indicates unsoundness.
If a system fails the soundness testing it must be repaired by the unsoundness repair deadline or be
withdrawn. The soundness testing eliminates the possibility of a system simply delaying for some
amount of time and then claiming to have found a solution. At some time after the competition, all
high ranking systems in the competition divisions are tested over the entire TPTP. This provides a
final check for soundness. For systems running on entrant supplied computers in the demonstration
division, the entrant must perform the soundness testing and report the results to the competition
organizers.

• Systems do not have to be complete in any sense, including calculus, search control, implementa-
tion, or resource requirements.

• Systems must be executable by a single command line, using an absolute path name for the exe-
cutable, which might not be in the current directory. In the non-LTB divisions the command line
arguments are the absolute path name of a symbolic link as the problem file name, the time limit
(if required by the entrant), and entrant specified system switches (the same for all problems). In
the LTB division the command line arguments are the absolute path name of a file containing pairs
of absolute problem file names and absolute output file names (where the output for the problem

9

CASC-J4 Geoff Sutcliffe

must be written), the time limit (if required by the entrant), and entrant specified system switches.
No shell features, such as input or output redirection, may be used in the command line. No
assumptions may be made about the format of the problem file name.

• The systems that run on the competition computers have to be interruptable by a SIGXCPU signal, so
that the CPU time limit can be imposed on each solution attempt, and interruptable by a SIGALRM

signal, so that the wall clock time limit can be imposed on each solution attempt. For systems that
create multiple processes, the signal is sent first to the process at the top of the hierarchy, then one
second later to all processes in the hierarchy. The default action on receiving these signals is to
exit (thus complying with the time limit, as required), but systems may catch the signals and exit
of their own accord. If a system runs past a time limit this is noticed in the timing data, and the
system is considered to have not solved that problem.

• In the non-LTB divisions all solution output must be to stdout. In the LTB division all solution
output must be to the named output file for each problem (output to stdout and stderr will be
redirected to /dev/null).

• When terminating of their own accord, the systems have to output a distinguished string (specified
by the entrant) on stdout indicating either that a solution has been found, or that no conclusion
has been reached. The distinguished strings the problem status should use the SZS ontology, in a
line starting SZS status. For example

SZS status Unsatisfiable for SYN075+1

or

SZS status GaveUp for SYN075+1

Regardless of whether the SZS status values are used, the distinguished strings must be different
for:

– Proved theorems of FOF problems (SZS status Theorem)
– Disproved conjectures of FNT problems (SZS status CounterSatisfiable)
– Unsatisfiable sets of formulae (FOF problems without conjectures) and unsatisfiable set of

clauses (CNF problems) (SZS status Unsatisfiable)
– Satisfiable sets of formulae (FNT problems without conjectures) and satisfiable set of clauses

(SAT problems) (SZS status Satisfiable)

The first such string is recognized, and accepted as the system’s claimed result.
• When outputing proofs/models for the proof/model ranking classes, the start and end of the proof/-

model must be identified by distinguished strings (specified by the entrant). The distinguished
strings should specify the precise output form named in the SZS ontology, using lines starting SZS
output start and SZS output end. For example

SZS output start CNFRefutation for SYN075-1
...

SZS output end CNFRefutation for SYN075-1

Regardless of whether the SZS output forms are used, the distinguished strings must be different
for:

– Proofs (SZS output forms Proof, Refutation, CNFRefutation)
– Models (SZS output forms Model, FiniteModel, InfiniteModel, Saturation)

The string specifying the problem status must be output before the start of a proof/model.

10

CASC-J4 Geoff Sutcliffe

• If an ATP system terminates of its own accord, it may not leave any temporary or other output
files. If an ATP system is terminated by a SIGXCPU or SIGALRM, it may not leave any temporary
or other output files anywhere other than in /tmp. Multiple copies of the ATP systems have to
be executable concurrently on different machines but in the same (NFS cross mounted) directory.
It is therefore necessary to avoid producing temporary files that do not have unique names, with
respect to the machines and other processes. An adequate solution is a file name including the host
machine name and the process id.

• For practical reasons excessive output from an ATP system is not allowed. A limit, dependent on
the disk space available, is imposed on the amount of output that can be produced. The limit is at
least 10MB per system.

• The precomputation and storage of any information specifically about TPTP problems is not al-
lowed. Strategies and strategy selection based on the characteristics of a few specific TPTP prob-
lems are not allowed, i.e., strategies and strategy selection must be general purpose and expected
to extend usefully to new unseen problems. If automatic strategy learning procedures are used, the
learning must ensure that sufficient generalization is obtained, and that no learning at the individual
problem level is performed.

• The system’s performance must be reproducible by running the system again.

Entrants must ensure that their systems execute in a competition-like environment, according to the
system checks described in Section 6.4. Entrants are advised to perform these checks well in advance of
the system delivery deadline. This gives the competition organizers time to help resolve any difficulties
encountered. Entrants will not have access to the competition computers.

6.2 System Delivery

For systems running on the competition computers, entrants must email an installation package to the
competition organizers by the system delivery deadline. The installation package must be a .tar.gz
file containing the system source code, any other files required for installation, and a ReadMe file. The
ReadMe file must contain:

• Instructions for installation
• Instructions for executing the system
• Format of problem files, in the form of tptp2X format and transformation parameters.
• Command line, using %s and %d to indicate where the problem file name and CPU time limit must

appear.
• The distinguished strings output.

The installation procedure may require changing path variables, invoking make or something simi-
lar, etc, but nothing unreasonably complicated. All system binaries must be created in the installation
process; they cannot be delivered as part of the installation package. The system is installed onto the
competition computers by the competition organizers, following the instructions in the ReadMe file. In-
stallation failures before the system delivery deadline are passed back to the entrant. (i.e., delivery of
the installation package before the system delivery deadline provides an opportunity to fix things if the
installation fails!). After the system delivery deadline no further changes or late systems are accepted.

For systems running on entrant supplied computers in the demonstration division, entrants must
deliver a source code package to the competition organizers by the start of the competition. The source
code package must be a .tgz file containing the system source code.

After the competition all competition division systems’ source code is made publically available on
the CASC WWW site. In the demonstration division, the entrant specifies whether or not the source code
is placed on the CASC WWW site. An open source license is encouraged.

11

CASC-J4 Geoff Sutcliffe

6.3 System Execution

Execution of the ATP systems on the competition computers is controlled by a perl script, provided by
the competition organizers. The jobs are queued onto the computers so that each computer is running
one job at a time. In the non-LTB divisions, all attempts at the Nth problems in all the divisions and
categories are started before any attempts at the (N+1)th problems. In the LTB division all attempts in
each category in the division are started before any attempts at the next category.

During the competition a perl script parses the systems’ outputs. If any of an ATP system’s distin-
guished strings are found then the CPU time used to that point is noted. A system has solved a problem
iff it outputs its termination string within the CPU time limit, and a system has produced a proof/model
iff it outputs its end-of-proof/model string within the CPU time limit. The result and timing data is used
to generate an HTML file, and a WWW browser is used to display the results.

The execution of the demonstration division systems is supervised by their entrants.

6.4 System Checks

• Check: The ATP system can run on a computer that has the same configuration as the competition
computers. The competition computers’ configuration, obtained from uname, is:

> uname -mp -sr
Linux 2.6.25.9-76.fc9.i686 i686 i686

If the ATP system requires any special software, libraries, etc, which not part of a standard instal-
lation, the competition organizers must be told in the system registration.

• Check: The ATP system can be run by an absolute path name for the executable.

prompt> pwd
/home/tptp
prompt> which MyATPSystem
/home/tptp/bin/MyATPSystem
prompt> /home/tptp/bin/MyATPSystem /home/tptp/TPTP/Problems/SYN/SYN075-1.p
SZS status Unsatisfiable for SYN075-1

• Check: The ATP system accepts an absolute path name of a symbolic link as the problem file
name.

prompt> cd /home/tptp/tmp
prompt> ln -s /home/tptp/TPTP/Problems/SYN/SYN075-1.p CCC001-1.p
prompt> cd /home/tptp
prompt> /home/tptp/bin/MyATPSystem /home/tptp/tmp/CCC001-1.p
SZS status Unsatisfiable for CCC001-1

• Check: The ATP system makes no assumptions about the format of the problem file name.

prompt> ln -s /home/tptp/TPTP/Problems/GRP/GRP001-1.p _foo-Blah
prompt> /home/tptp/bin/MyATPSystem _foo-Blah
SZS status Unsatisfiable for _foo-Blah

• Check: The ATP system can run under the TreeLimitedRun program (sources are available from
the CASC WWW site).

12

CASC-J4 Geoff Sutcliffe

prompt> which TreeLimitedRun
/home/tptp/bin/TreeLimitedRun
prompt> /home/tptp/bin/TreeLimitedRun -q0 200 400 /home/tptp/bin/MyATPSystem

/home/tptp/tmp/CCC001-1.p
TreeLimitedRun: --
TreeLimitedRun: /home/tptp/bin/MyATPSystem
TreeLimitedRun: CPU time limit is 200s
TreeLimitedRun: WC time limit is 400s
TreeLimitedRun: PID is 4867
TreeLimitedRun: --
SZS status Unsatisfiable for CCC001-1
FINAL WATCH: 147.8 CPU 150.0 WC

• Check: The ATP system’s CPU time can be limited using the TreeLimitedRun program.

prompt> /home/tptp/bin/TreeLimitedRun -q0 10 20 /home/tptp/bin/MyATPSystem
/home/tptp/tmp/CCC001-1.p

TreeLimitedRun: --
TreeLimitedRun: /home/tptp/bin/MyATPSystem
TreeLimitedRun: CPU time limit is 10s
TreeLimitedRun: WC time limit is 20s
TreeLimitedRun: PID is 5827
TreeLimitedRun: --
CPU time limit exceeded
FINAL WATCH: 10.7 CPU 13.1 WC

• Check: The ATP system’s wall clock time can be limited using the TreeLimitedRun program.

prompt> /home/tptp/bin/TreeLimitedRun -q0 20 10 /home/tptp/bin/MyATPSystem
/home/tptp/tmp/CCC001-1.p

TreeLimitedRun: --
TreeLimitedRun: /home/tptp/bin/MyATPSystem
TreeLimitedRun: CPU time limit is 20s
TreeLimitedRun: WC time limit is 10s
TreeLimitedRun: PID is 5827
TreeLimitedRun: --
Alarm clock
FINAL WATCH: 9.7 CPU 10.1 WC

• Check: The system outputs a distinguished string when terminating of its own accord.

prompt> /home/tptp/bin/TreeLimitedRun -q0 200 400 /home/tptp/bin/MyATPSystem
/home/tptp/tmp/CCC001-1.p

TreeLimitedRun: --
TreeLimitedRun: /home/tptp/bin/MyATPSystem
TreeLimitedRun: CPU time limit is 200s
TreeLimitedRun: WC time limit is 400s
TreeLimitedRun: PID is 5827
TreeLimitedRun: --
SZS status Unsatisfiable for CCC001-1
FINAL WATCH: 147.8 CPU 150.0 WC

Similar checks should be made for the cases where the system gives up.

13

CASC-J4 Geoff Sutcliffe

• Check: The system outputs distinguished strings at the start and end of its solution.

prompt> /home/tptp/bin/TreeLimitedRun -q0 200 400 /home/tptp/bin/MyATPSystem
-output_proof /home/tptp/tmp/CCC001-1.p

TreeLimitedRun: --
TreeLimitedRun: /home/tptp/bin/MyATPSystem
TreeLimitedRun: CPU time limit is 200s
TreeLimitedRun: WC time limit is 400s
TreeLimitedRun: PID is 5827
TreeLimitedRun: --
SZS status Unsatisfiable for CCC001-1
SZS output start CNFRefutation for CCC001-1

... acceptable proof/model here ...
SZS output end CNFRefutation for CCC001-1
FINAL WATCH: 147.8 CPU 150.0 WC

• Check: No temporary or other files are left if the system terminates of its own accord, and no
temporary or other files are left anywhere other than in /tmp if the system is terminated by a
SIGXCPU or SIGALRM. Check in the current directory, the ATP system’s directory, the directory
where the problem’s symbolic link is located, and the directory where the actual problem file is
located.

prompt> pwd
/home/tptp
prompt> /home/tptp/bin/TreeLimitedRun -q0 200 400 /home/tptp/bin/MyATPSystem

/home/tptp/tmp/CCC001-1.p
TreeLimitedRun: --
TreeLimitedRun: /home/tptp/bin/MyATPSystem
TreeLimitedRun: CPU time limit is 200s
TreeLimitedRun: WC time limit is 400s
TreeLimitedRun: PID is 13526
TreeLimitedRun: --
SZS status Unsatisfiable for CCC001-1
FINAL WATCH: 147.8 CPU 150.0 WC
prompt> ls /home/tptp

... no temporary or other files left here ...
prompt> ls /home/tptp/bin

... no temporary or other files left here ...
prompt> ls /home/tptp/tmp

... no temporary or other files left here ...
prompt> ls /home/tptp/TPTP/Problems/GRP

... no temporary or other files left here ...
prompt> ls /tmp

... no temporary or other files left here by decent systems ...

• Check: Multiple concurrent executions do not clash.

prompt> (/bin/time /home/tptp/bin/TreeLimitedRun -q0 200 400
/home/tptp/bin/MyATPSystem /home/tptp/tmp/CCC001-1.p) &
(/bin/time /home/tptp/bin/TreeLimitedRun -q0 200 400
/home/tptp/bin/MyATPSystem /home/tptp/tmp/CCC001-1.p)

TreeLimitedRun: --
TreeLimitedRun: /home/tptp/bin/MyATPSystem
TreeLimitedRun: CPU time limit is 200s

14

CASC-J4 Geoff Sutcliffe

TreeLimitedRun: WC time limit is 400s
TreeLimitedRun: PID is 5827
TreeLimitedRun: --
TreeLimitedRun: --
TreeLimitedRun: /home/tptp/bin/MyATPSystem
TreeLimitedRun: CPU time limit is 200s
TreeLimitedRun: WC time limit is 400s
TreeLimitedRun: PID is 5829
TreeLimitedRun: --
SZS status Unsatisfiable for CCC001-1
FINAL WATCH: 147.8 CPU 150.0 WC

SZS status Unsatisfiable for CCC001-1
FINAL WATCH: 147.8 CPU 150.0 WC

7 The ATP Systems

These system descriptions were written by the entrants.

7.1 CHewTPTP 1.0

Eric McGregor
Clrakson University, USA

Architecture

ChewTPTP version 1.0 implements the method described in [BKL+08, DHJ+07]. ChewTPTP trans-
forms a set of first order clauses into a propositional encoding (modulo recursive type theory) of the
existence of a rigid first order connection tableau and the satisfiability of unification constraints, which
is then fed to Yices. For the unification constraints, terms are represented as recursive datatypes, and
unification constraints are equations on terms. Additional instances of the first order clauses may be
added for the non-rigid case.

Strategies

The strategy is as follows:

1. Encode the existence of a rigid connection tableau with unification constraints.
2. Run SMT solver on encoding.
3. If the solver returns satisfiable, we verify that the model represents a rigid tableau. If it does we

return unsatisfiable, otherwise we add additional clauses and goto 2.
4. If the solver returns unsatisfiable we add additional instances of the initial clauses to the problem

and goto 1.

Implementation

ChewTPTP is written in C++ and uses Yices SMT solver. Yices requires GMP, the GNU Multiprecision
Library.

15

CASC-J4 Geoff Sutcliffe

Expected Competition Performance

The system is a demonstration of the method described above and is not expected to win its division.

7.2 Darwin 1.3

Peter Baumgartner1, Alexander Fuchs2, Cesare Tinelli2
1NICTA Australia,
2University of Iowa, USA

Architecture

Darwin [BFT04, BFT06a] is an automated theorem prover for first order clausal logic. It is the first
implementation of the Model Evolution Calculus [BT03]. The Model Evolution Calculus lifts the propo-
sitional DPLL procedure to first-order logic. One of the main motivations for this approach was the
possibility of migrating to the first-order level some of those very effective search techniques developed
by the SAT community for the DPLL procedure.

The current version of Darwin implements first-order versions of unit propagation inference rules
analogously to a restricted form of unit resolution and subsumption by unit clauses. To retain complete-
ness, it includes a first-order version of the (binary) propositional splitting inference rule.

Proof search in Darwin starts with a default interpretation for a given clause set, which is evolved
towards a model or until a refutation is found.

Implementation

The central data structure is the context. A context represents an interpretation as a set of first-order
literals. The context is grown by using instances of literals from the input clauses. The implementation
of Darwin is intended to support basic operations on contexts in an efficient way. This involves the
handling of large sets of candidate literals for modifying the current context. The candidate literals are
computed via simultaneous unification between given clauses and context literals. This process is sped up
by storing partial unifiers for each given clause and merging them for different combinations of context
literals, instead of redoing the whole unifier computations. For efficient filtering of unneeded candidates
against context literals, discrimination tree or substitution tree indexing is employed. The splitting rule
generates choice points in the derivation which are backtracked using a form of backjumping similar to
the one used in DPLL-based SAT solvers.

Improvements to the previous version include additional preprocessing steps, less memory require-
ments, and lemma learning [BFT06b].

Darwin is implemented in OCaml and has been tested under various Linux distributions (compiled
but untested on FreeBSD, MacOS X, Windows). It is available from http://goedel.cs.uiowa.edu/
Darwin/.

Strategies

Darwin traverses the search space by iterative deepening over the term depth of candidate literals. Darwin
employs a uniform search strategy for all problem classes.

Expected Competition Performance

Darwin 1.3 is the CASC-21 EPR division winner.

16

http://goedel.cs.uiowa.edu/Darwin/
http://goedel.cs.uiowa.edu/Darwin/

CASC-J4 Geoff Sutcliffe

7.3 E and EP 1.0pre

Stephan Schulz
Technische Universität München, Germany

Architecture

E 1.0pre [Sch02, Sch04b] is a purely equational theorem prover. The core proof procedure operates
on formulas in clause normal form, using a calculus that combines superposition (with selection of
negative literals) and rewriting. No special rules for non-equational literals have been implemented, i.e.,
resolution is simulated via paramodulation and equality resolution. The basic calculus is extended with
rules for AC redundancy elimination, some contextual simplification, and pseudo-splitting with definition
caching. The latest versions of E also supports simultaneous paramodulation, either for all inferences or
for selected inferences.

E is based on the DISCOUNT-loop variant of the given-clause algorithm, i.e., a strict separation
of active and passive facts. Proof search in E is primarily controlled by a literal selection strategy, a
clause evaluation heuristic, and a simplification ordering. The prover supports a large number of prepro-
grammed literal selection strategies, many of which are only experimental. Clause evaluation heuristics
can be constructed on the fly by combining various parameterized primitive evaluation functions, or
can be selected from a set of predefined heuristics. Supported term orderings are several parameterized
instances of Knuth-Bendix-Ordering (KBO) and Lexicographic Path Ordering (LPO).

The prover uses a preprocessing step to convert formulas in full first order format to clause normal
form. This step may introduce (first-order) definitions to avoid an exponential growth of the formula.
Preprocessing also unfolds equational definitions and performs some simplifications on the clause level.

The automatic mode determines literal selection strategy, term ordering, and search heuristic based
on simple problem characteristics of the preprocessed clausal problem.

EP 1.0pre is just a combination of E 1.0pre in verbose mode and a proof analysis tool extracting the
used inference steps.

Strategies

E has been optimized for performance over the TPTP. The automatic mode of E 1.0pre is inherited from
previous version and is based on about 90 test runs over TPTP 3.1.1. It consists of the selection of
one of about 40 different strategies for each problem. All test runs have been performed on SUN Ultra
60/300 machines with a time limit of 300 seconds (or roughly equivalent configurations). All individual
strategies are refutationally complete. The worst one solves about 49of TPTP 3.0.1, the best one about
60

E distinguishes problem classes based on a number of features, all of which have between 2 and 4
possible values. The most important ones are:

• Is the most general non-negative clause unit, Horn, or Non-Horn?
• Is the most general negative clause unit or non-unit?
• Are all negative clauses unit clauses?
• Are all literals equality literals, are some literals equality literals, or is the problem non-equational?
• Are there a few, some, or many clauses in the problem?
• Is the maximum arity of any function symbol 0, 1, 2, or greater?
• Is the sum of function symbol arities in the signature small, medium, or large?

17

CASC-J4 Geoff Sutcliffe

Wherever there is a three-way split on a numerical feature value, the limits are selected automatically
with the aim of splitting the set of problems into approximately equal sized parts based on this one
feature.

For classes above a threshold size, we assign the absolute best heuristic to the class. For smaller,
non-empty classes, we assign the globally best heuristic that solves the same number of problems on
this class as the best heuristic on this class does. Empty classes are assigned the globally best heuristic.
Typically, most selected heuristics are assigned to more than one class.

Implementation

E is implemented in ANSI C, using the GNU C compiler. At the core is a implementation of aggressively
shared first-order terms in a term bank data structure. Based on this, E supports the global sharing
of rewrite steps. Rewriting is implemented in the form of rewrite links from rewritten to new terms.
In effect, E is caching rewrite operations as long as sufficient memory is available. Other important
features are the use of perfect discrimination trees with age and size constraints for rewriting and unit-
subsumption, feature vector indexing [Sch04a] for forward- and backward subsumption and contextual
literal cutting, and a new polynomial implementation of LPO [Loe04].

The program has been successfully installed under SunOS 4.3.x, Solaris 2.x, HP-UX B 10.20,
MacOS-X, and various versions of Linux. Sources of the latest released version are available freely
from http://www.eprover.org.

EP 1.0pre is a simple Bourne shell script calling E and the postprocessor in a pipeline.

Expected Competition Performance

In the last years, E performed well in most proof categories. We believe that E will again be among the
stronger provers in the FOF and CNF categories. We hope that E will at least be a useful complement to
dedicated systems in the other categories.

EP 1.0p will be hampered by the fact that it has to analyse the inference step listing, an operation
that typically is about as expensive as the proof search itself. Nevertheless, it should be competitive in
the FOF proof class.

7.4 E-KRHyper 1.1

Björn Pelzer
University Koblenz-Landau, Germany

Architecture

E-KRHyper 1.1 [PW07] is a theorem proving and model generation system for first-order logic with
equality. It is an implementation of the E-hyper tableau calculus [BFP07], which integrates a superposition-
based handling of equality [BG98] into the hyper tableau calculus [BFN96]. The system is an extension
of the KRHyper theorem prover [Wer03], which implements the original hyper tableau calculus.

An E-hyper tableau is a tree whose nodes are labeled with clauses and which is built up by the
application of the inference rules of the E-hyper tableau calculus. The calculus rules are designed such
that most of the reasoning is performed using positive unit clauses. A branch can be extended with new
clauses that have been derived from the clauses of that branch.

A positive disjunction can be used to split a branch, creating a new branch for each disjunct. No vari-
ables may be shared between branches, and if a case-split creates branches with shared variables, then
these are immediately substituted by ground terms. The grounding substitution is arbitrary as long as the

18

http://www.eprover.org

CASC-J4 Geoff Sutcliffe

terms in its range are irreducible: the branch being split may not contain a positive equational unit which
can simplify a substituting term, i.e., rewrite it with one that is smaller according to a reduction order-
ing. When multiple irreducible substitutions are possible, each of them must be applied in consecutive
splittings in order to preserve completeness.

Redundancy rules allow the detection and removal of clauses that are redundant with respect to a
branch.

The hyper extension inference from the original hyper tableau calculus is equivalent to a series of
E-hyper tableau calculus inference applications. Therefore the implementation of the hyper extension in
KRHyper by a variant of semi-naive evaluation [Ull89] is retained in E-KRHyper, where it serves as a
shortcut inference for the resolution of non-equational literals.

Strategies

E-KRHyper uses a uniform search strategy for all problems. The E-hyper tableau is generated depth-first,
with E-KRHyper always working on a single branch. Refutational completeness and a fair search control
are ensured by an iterative deepening strategy with a limit on the maximum term weight of generated
clauses.

Implementation

E-KRHyper is implemented in the functional/imperative language OCaml, and Runs on Unix and MS-
Windows platforms. The system accepts input in the TPTP format and in the TPTP-supported Protein
format. The calculus implemented by E-KRHyper works on clauses, so first order formula input is
converted into CNF by an algorithm which follows the transformation steps as used in the clausification
of Otter [McC94b]. E-KRHyper operates on an E-hyper tableau which is represented by linked node
records. Several layered discrimination-tree based indexes (both perfect and non-perfect) provide access
to the clauses in the tableau and support backtracking.

E-KRHyper is available under the GNU Public License from http://www.uni-koblenz.de/~bpelzer/
ekrhyper.

Expected Competition Performance

Most work on E-KRHyper since version 1.0 has been concerning its interfaces and embedding in natural
language processing applications, so only a minor improvement in comparison to last year’s performance
can be expected.

7.5 Equinox 3.0

Koen Claessen
Chalmers University of Technology, Sweden

Architecture

Equinox is an experimental theorem prover for pure first-order logic with equality. It finds ground proofs
of the input theory, by solving successive ground instantiations of the theory using an incremental SAT-
solver. Equality is dealt with using a Nelson-Oppen framework.

19

http://www.uni-koblenz.de/~bpelzer/ekrhyper
http://www.uni-koblenz.de/~bpelzer/ekrhyper

CASC-J4 Geoff Sutcliffe

Implementation

The main part of Equinox is implemented in Haskell using the GHC compiler. Equinox also has a built-
in incremental SAT solver (MiniSat) which is written in C++. The two parts are linked together on the
object level using Haskell’s Foreign Function Interface.

Strategies

There is only one strategy in Equinox:

1. Give all ground clauses in the problem to a SAT solver.
2. Run the SAT-solver.
3. If a contradiction is found, we have a proof and we terminate.
4. If a model is found, we use the model to indicate which new ground instantiations should be added

to the SAT-solver.
5. Goto 2.

Expected Competition Performance

Equinox should perform reasonably well. There should be problems that it can solve that few other
provers can handle.

7.6 iProver 0.5

Konstantin Korovin
The University of Manchester, England

Architecture

iProver is an automated theorem prover which is based on an instantiation calculus Inst-Gen [GK03,
Kor08a], complete for first-order logic. One of the distinctive features of iProver is a modular combina-
tion of first-order reasoning with ground reasoning. In particular, iProver currently integrates MiniSat for
reasoning with ground abstractions of first-order clauses. In addition to instantiation, iProver implements
ordered resolution calculus and a combination of instantiation and ordered resolution, see [Kor08b] for
the implementation details. The saturation process is implemented as a modification of a given clause
algorithm. We use non-perfect discrimination trees for the unification indexes, priority queues for pas-
sive clauses and a compressed vector index for subsumption and subsumption resolution (both forward
and backward). The following redundancy eliminations are implemented: blocking non-proper instan-
tiations; dismatching constraints [GK04, Kor08b]; global subsumption [Kor08b]; resolution-based sim-
plifications and propositional-based simplifications. Equality is dealt with (internally) by adding the
necessary axioms of equality.

Strategies

iProver v0.5 has around 40 options to control the proof search including options for literal selections,
passive clause selections, frequency of calling the SAT solver, simplifications and options for combina-
tion of instantiation with resolution. At the CASC competition iProver will execute a fixed schedule of
selected options.

20

CASC-J4 Geoff Sutcliffe

Implementation

iProver is implemented in OCaml and for the ground reasoning uses MiniSat. iProver accepts cnf and
fof formats. In the case of fof format, either Vampire or E prover is used for clausification.

iProver is available at http://www.cs.man.ac.uk/~korovink/iprover/.

Expected Competition Performance

The instantiation method behind iProver is a decision procedure for the EPR class, and we expect a good
performance in this class. We also expect a reasonable performance in FOF and CNF classes.

7.7 MaLARea 0.3

Josef Urban
Charles University in Prague, Czech Republic

Architecture

MaLARea 0.3 [Urb07, USPV08] is a metasystem for ATP in large theories where symbol and formula
names are used consistently. It uses several deductive systems (now E,SPASS,Paradox,Mace), as well as
complementary AI techniques like machine learning (the SNoW system) based on symbol-based simi-
larity, model-based similarity, term-based similarity, and obviously previous successful proofs.

Strategies

The basic strategy is to run ATPs on problems, then use the machine learner to learn axiom relevance
for conjectures from solutions, and use the most relevant axioms for next ATP attempts. This is iterated,
using different timelimits and axiom limits. Various features are used for learning, and the learning is
complemented by other criteria like model-based reasoning, symbol and term-based similarity, etc.

Implementation

The metasystem is implemented in ca. 2500 lines of Perl. It uses many external programs - the above
mentioned ATPs and machine learner, TPTP utilities, LADR utilities for work with models, and some
standard Unix tools. MaLARea is available at http://kti.ms.mff.cuni.cz/cgi-bin/viewcvs.
cgi/MPTP2/MaLARea/.

The metasystem’s Perl code is released under GPL2.

Expected Competition Performance

Thanks to machine learning, MaLARea is strongest on batches of many related problems with many
redundant axioms where some of the problems are easy to solve and can be used for learning the axiom
relevance. MaLARea is not very good when all problems are too difficult (nothing to learn from), or
the problems (are few and) have nothing in common. Some of its techniques (selection by symbol and
term-based similarity, model-based reasoning) could however make it even there slightly stronger than
standard ATPs. MaLARea has a very good performance on the MPTP Challenge, which is a predecessor
of the LTB division.

21

http://www.cs.man.ac.uk/~korovink/iprover/
http://kti.ms.mff.cuni.cz/cgi-bin/viewcvs.cgi/MPTP2/MaLARea/
http://kti.ms.mff.cuni.cz/cgi-bin/viewcvs.cgi/MPTP2/MaLARea/

CASC-J4 Geoff Sutcliffe

7.8 MetaProver 1.0

Matthew Streeter
Carnegie Mellon University, USA

Architecture

MetaProver is a hybridization of solvers entered in last year’s CASC competition. When given a problem
instance, MetaProver runs one or more solvers subject to time limits, according to a fixed schedule. The
following is an example of such a schedule.

1. Run E 0.999 for 0.01 seconds.
2. Run Geo 2007f for 0.02 seconds.
3. Run Metis 2.0 for 0.01 seconds.
4. Run E 0.999 for 0.03 seconds.
5. Run Geo 2007f for 0.06 seconds.
6. Run Paradox 2.2 for 0.3 seconds.
7. Run E 0.999 for 0.07 seconds.
8. Run Paradox 2.2 for 1.48 seconds.
9. Run Metis 2.0 for 0.43 seconds.

10. Run Paradox 2.2 for 3.34 seconds.
11. Run iProver 0.2 for 32.75 seconds.
12. Run E 0.999 for 164.54 seconds.

Note that the average time such a schedule requires to solve a problem instance can be much lower
than that of any of the algorithms used in the schedule.

To compute an effective schedule, the solvers entered in last year’s CASC competition were run on all
the TPTP-v3.4.1 benchmark instances in the SAT and FNT divisions, subject to a five minute time limit
per instance (the SAT and FNT divisions were chosen because preliminary experiments indicated that
a scheduling approach would work well in those divisions). Using the timing data obtained from these
runs, a schedule was then computed that, if run on each benchmark instance, would solve the instances
in the minimum average time. Two schedules were computed, one for the FNT instances and one for the
SAT instances. The schedules were computed using the greedy approximation algorithm described in
[SGS07].

Because the time required to solve a particular benchmark instance varies across machines, a sched-
ule must be calibrated for use on a particular machine. This calibration is performed as part of MetaProver’s
installation script. The example schedule shown above is the schedule used by MetaProver for instances
in the FNT division, calibrated for execution on an Intel Xeon 3.6 GHz machine with 4 GB of memory.

Strategies

The strategies used by MetaProver include those used by its component algorithms: DarwinFM 1.4.1, E
0.999, Geo 2007f, iProver 0.2, Metis 2.0, Paradox 1.3, and Paradox 2.2. At a higher level, MetaProver
adopts the strategy of running its component algorithms according to a schedule derived from the algo-
rithms’ performance on the relevant TPTP benchmark instances, as described in the previous section.
This schedule is computed using performance data for a large number of benchmark instances, and thus
it is reasonable to expect the schedule’s performance to generalize well to new, previously unseen in-
stances.

22

CASC-J4 Geoff Sutcliffe

Implementation

MetaProver is implemented as a set of bash scripts, and runs on Linux. It is available online at http:
//www.cs.cmu.edu/~matts/MetaProver.

Expected Competition Performance

MetaProver outperforms last year’s SAT division winner (Paradox 1.3) and last year’s FNT division
winner (Paradox 2.2) on the relevant TPTP benchmarks.

7.9 Metis 2.1

Joe Hurd
Galois, Inc., USA

Architecture

Metis 2.1 [Hur03] is a proof tactic used in the HOL4 interactive theorem prover. It works by converting
a higher order logic goal to a set of clauses in first order logic, with the property that a refutation of the
clause set can be translated to a higher order logic proof of the original goal.

Experiments with various first order calculi [Hur03] have shown a given clause algorithm and or-
dered resolution to best suit this application, and that is what Metis 2.1 implements. Since equality
often appears in interactive theorem prover goals, Metis 2.1 also implements the ordered paramodulation
calculus.

Strategies

Metis 2.1 uses a fixed strategy for every input problem. Negative literals are always chosen in favour
of positive literals, and terms are ordered using the Knuth-Bendix ordering with uniform symbol weight
and precedence favouring reduced arity.

Implementation

Metis 2.1 is written in Standard ML, for ease of integration with HOL4. It uses indexes for resolution,
paramodulation, (forward) subsumption and demodulation. It keeps the Active clause set reduced with
respect to all the unit equalities so far derived.

In addition to standard size and distance measures, Metis 2.1 uses finite models to weight clauses
in the Passive set. When integrated with higher order logic, a finite model is manually constructed
to interpret standard functions and relations in such a way as to make many axioms true and negated
goals false. Non-standard functions and relations are interpreted randomly, but with a bias towards
making negated goals false. Since it is part of the CASC competition rules that standard functions and
relations are obfuscated, Metis 2.1 will back-off to interpreting all functions and relations randomly
(except equality), using a finite model with 4 elements.

Metis 2.1 reads problems in TPTP format and outputs detailed proofs in TSTP format, where each
proof step is one of 6 simple inference rules. Metis 2.1 implements a complete calculus, so when the
set of clauses is saturated it can soundly declare the input problem to be unprovable (and outputs the
saturation set).

Metis 2.1 is free software, released under the GPL. It can be downloaded from http://www.
gilith.com/software/metis.

23

http://www.cs.cmu.edu/~matts/MetaProver
http://www.cs.cmu.edu/~matts/MetaProver
http://www.gilith.com/software/metis
http://www.gilith.com/software/metis

CASC-J4 Geoff Sutcliffe

Expected Competition Performance

The major change between Metis 2.0, which was entered into CASC-21, and Metis 2.1 is the TSTP proof
format. There were only minor changes to the core proof engine, so Metis 2.1 is expected to perform at
approximately the same level and end up in the lower half of the table.

7.10 Muscadet 3.0

Dominique Pastre
Université René Descartes Paris-5, France

Architecture

The MUSCADET theorem prover is a knowledge-based system. It is based on Natural Deduction, fol-
lowing the terminology of [Ble71] and [Pas78], and uses methods which resembles those used by hu-
mans. It is composed of an inference engine, which interprets and executes rules, and of one or several
bases of facts, which are the internal representation of “theorems to be proved”. Rules are either univer-
sal and put into the system, or built by the system itself by metarules from data (definitions and lemmas).
Rules may add new hypotheses, modify the conclusion, create objects, split theorems into two or more
subtheorems or build new rules which are local for a (sub-)theorem.

Strategies

There are specific strategies for existential, universal, conjonctive or disjunctive hypotheses and conclu-
sions. Functional symbols may be used, but an automatic creation of intermediate objects allows deep
subformulae to be flattened and treated as if the concepts were defined by predicate symbols. The suc-
cessive steps of a proof may be forward deduction (deduce new hypotheses from old ones), backward
deduction (replace the conclusion by a new one) or refutation (only if the conclusion is a negation).

The system is also able to work with second order statements. It may also receive knowledge and
know-how for a specific domain from a human user; see [Pas89] and [Pas93]. These two possibilities are
not used while working with the TPTP Library.

Implementation

Muscadet 3.0 [Pas01] is implemented in SWI-Prolog. Rules are written as declarative Prolog clauses.
Metarules are written as sets of Prolog clauses, more or less declarative. The inference engine includes
the Prolog interpreter and some procedural Prolog clauses.

Proofs are given in natural style (for each step, that is for each action or rule application, the system
gives the new fact, the precedent facts its comes from and an explanation).

Muscadet 3.0 is available from http://www.math-info.univ-paris5.fr/~pastre/muscadet/
muscadet.html.

Expected Competition Performance

The best performances of Muscadet will be for problems manipulating many concepts in which all state-
ments (conjectures, definitions, axioms) are expressed in a manner similar to the practice of humans,
especially of mathematicians [Pas02, Pas07]. It will have poor performances for problems using few
concepts but large and deep formulas leading to many splittings.

Muscadet 3.0 will probably have the same performances as Muscadet 2.7a (2007 CASC-21 version
+ bugfixed), but will give an out proof for most solved problems.

24

http://www.math-info.univ-paris5.fr/~pastre/muscadet/muscadet.html
http://www.math-info.univ-paris5.fr/~pastre/muscadet/muscadet.html

CASC-J4 Geoff Sutcliffe

7.11 OSHL-S 0.1

Hao Xu, David Plaisted
University of North Carolina at Chapel Hill, USA

Architecture

OSHL-S is a theorem prover based on the architecture and strategy introduced in [PZ00] with a few
improvements. A preliminary form of type inference is employed to reduce the number of instances that
are generated before a contradicting instance is found.

Strategies

OSHL-S employs a uniform strategy for all problems, which is similar to OSHL: It starts with a all
negative or all positive model. In each iteration, it finds a contradicting instance according to a relaxed
ordering and type information, and then modifies the model to make the instance satisfiable, if possible.

Implementation

OSHL-S is implemented in Java using Java SE 6 SDK and the Netbeans IDE. The profiler and the GUI
provided in Java SE 6 and the Netbeans IDE are employed to profile the system, which provide perfor-
mance data that are used for optimization. The implementation of OSHL-S combines a few strategies for
improving the performance of the system, including caching of terms, clauses, and solutions to integer
programming problems, lazy-evaluation, and backtracking.

Expected Competition Performance

The performance should be good for near propositional problems; otherwise, the competition perfor-
mance is unknown.

7.12 Otter 3.3

William McCune
Argonne National Laboratory, USA

Architecture

Otter 3.3 [McC03] is an ATP system for statements in first-order (unsorted) logic with equality. Otter
is based on resolution and paramodulation applied to clauses. An Otter search uses the “given clause
algorithm”, and typically involves a large database of clauses; subsumption and demodulation play an
important role.

Strategies

Otter’s original automatic mode, which reflects no tuning to the TPTP problems, will be used.

25

CASC-J4 Geoff Sutcliffe

Implementation

Otter is written in C. Otter uses shared data structures for clauses and terms, and it uses indexing for
resolution, paramodulation, forward and backward subsumption, forward and backward demodulation,
and unit conflict. Otter is available from http://www-unix.mcs.anl.gov/AR/otter/.

Expected Competition Performance

Otter has been entered into CASC as a stable benchmark against which progress can be judged (there
have been only minor changes to Otter since 1996 [MW97], nothing that really affects its performace in
CASC). This is not an ordinary entry, and we do not hope for Otter to do well in the competition.

Acknowledgments: Ross Overbeek, Larry Wos, Bob Veroff, and Rusty Lusk contributed to the devel-
opment of Otter.

7.13 Paradox 1.3

Koen Claessen, Niklas Sörensson
Chalmers University of Technology and Gothenburg University, Sweden

Architecture

Paradox [CS03] is a finite-domain model generator. It is based on a MACE-style [McC94a] flattening
and instantiating of the first-order clauses into propositional clauses, and then the use of a SAT solver to
solve the resulting problem.

Paradox incorporates the following features: Polynomial-time clause splitting heuristics, the use of
incremental SAT, static symmetry reduction techniques, and the use of sort inference.

The main differences with Paradox 1.0 are: a better SAT-solver, better memory behaviour, and a
faster clause instantiation algorithm.

Strategies

There is only one strategy in Paradox:

1. Analyze the problem, finding an upper bound N on the domain size of models, where N is possibly
infinite. A finite such upper bound can be found, for example, for EPR problems.

2. Flatten the problem, and split clauses and simplify as much as possible.
3. Instantiate the problem for domain sizes 1 up to N, applying the SAT solver incrementally for each

size. Report “SATISFIABLE” when a model is found.
4. When no model of sizes smaller or equal to N is found, report “CONTRADICTION”.

In this way, Paradox can be used both as a model finder and as an EPR solver.

Implementation

The main part of Paradox is implemented in Haskell using the GHC compiler. Paradox also has a built-in
incremental SAT solver which is written in C++. The two parts are linked together on the object level
using Haskell’s Foreign Function Interface.

26

http://www-unix.mcs.anl.gov/AR/otter/

CASC-J4 Geoff Sutcliffe

Expected Competition Performance

Paradox 1.3 is the CASC-21 SAT division winner.

7.14 Paradox 2.2 and 3.0

Koen Claessen, Niklas Sörensson
Chalmers University of Technology, Sweden

Architecture

Paradox 2.2 is a rewrite of Paradox 1.3. Paradox 2.2 does not have all the features yet that Paradox 1.3
has. Some experimental features, such as type-based model finding, have been added. Paradox 3.0 has
the same description as Paradox 2.2. See the description of Paradox 1.3 for general information.

Expected Competition Performance

Paradox 2.2 is the CASC-21 FNT division winner.

7.15 randoCoP 1.1

Jens Otten, Thomas Raths
University of Potsdam, Germany

Architecture

randoCoP [RO08] is an automated theorem prover for classical first-order logic. It is an extension of the
leanCoP [Ott08b, OB03] prover, which is a very compact implementation of the connection calculus. It
integrates a technique that randomly alters the proof search order by reordering the axioms of the given
problem and the literals within its clausal form.

Strategies

The shell script of randoCoP repeatedly reorders the axioms and the literals within the clausal form,
before invoking the two most successful variants of the leanCoP 2.0 core prover. These variants use
restricted backtracking [Ott08a] and benefit significantly from the reordering techniques used by rando-
CoP.

Implementation

randoCoP is implemented in Prolog. The essential extensions consist of a modified shell script, which
is used to invoke the leanCoP 2.0 core prover, and a few predicates that realize the reordering of axioms
and literals. A preprocessing component translates first-order formulas into a (definitional) clausal form.
Equality can be handled by adding the equality axioms. Version 1.1 of randoCoP returns a compact con-
nection proof, which is then translated into a readable proof. The source code of randoCoP is available
at http://www.leancop.de.

27

http://www.leancop.de

CASC-J4 Geoff Sutcliffe

Expected Competition Performance

The performance of randoCoP is in particular good on problems involving large theories, i.e., problems
that contain a large number of axioms.

7.16 SInE 0.3 and SInE-VD 0.3

Krystof Hoder
Charles University in Prague, Czech Republic

Architecture

SiNE 0.3 is an axiom selection system for first order theories. It uses a syntactic approach based on
symbols presence in axioms and conjecture. (When we say symbols, we mean functional, predicate and
constant symbols taken together.) A relation D (as in “Defines”) is created between symbols and axioms
which represents the fact that for a symbol there are some axioms that “give it its meaning”. When the
relation is constructed, the actual axiom selection starts. At the beginning only the conjecture is selected,
in each iteration the selection is extended by all axioms that are D-related to any symbol used in already
selected axioms. The iteration goes until no more axioms are selected. Then the selected axioms are
handed to an underlying inference engine.

Strategies

The construction of the D relation is inspired by the idea that general symbols are more likely to define
the meaning of more specific axioms than vice-versa. So given a generality measure on symbols, SiNE
puts each axiom into the relation with the least general of its symbols. (When there are more of them, all
are put in the relation.) The generality measure used is the number of axioms in which the symbol occurs.
(General symbols as s Entity are likely to be used more often than specific symbols like s Monday.)
One slight optimisation for SUMO problems is also used: When we run into a symbol ending with “ M”
we remove the suffix for the selection process. The “ M” suffix is used when a predicate symbol should
be used as functional. This strategy selects about 2% of axioms on problems CSR(075-109).

Implementation

The axiom selection is implemented in Python. The problem file is read and include directives are
extracted. Then problems which include the same sets of axioms are grouped together and the groups
are processed separately. In each group the axioms which would be included by problems are loaded and
preprocessed, constructing the D relation. (This takes most of time of the whole axiom selection.) Then
for each problem a set of axioms is selected based on all symbols that occur in the problem file and an
underlying prover is called. There are two underlying provers supported: EP and Vampire 9. EP will be
used in the competition division and Vampire 9 in the demonstration division (as the usage of Vampire
in the competition division was not allowed by its developers).

The batch mode isn’t fully finished yet. As vast majority of proved CSR(025-109) problems is proved
in first 10 seconds of underlying engine’s run (and all but three in first 30secs), I’ll probably add some
more iterations which would be less restrictive during the axiom selection.

Expected Competition Performance

The following table shows results when time-limit for conventional provers was set to 300s.

28

CASC-J4 Geoff Sutcliffe

CSR theorems E 0.999 Vampire 9 SInE with SInE with
(max=23) E0.999 Vampire 9
+1 3 17 12 17
+2 13 12 17
+3 3 13 18

This suggests that SInE could perform well especially on larger problems.
This could also improve with further optimisation of the batch mode - four of the six problems where

SInE with V9 failed were solved by V9 itself. Therefore another attempt with less restrictive axiom
selection could help.

7.17 Vampire 8.1

Andrei Voronkov
University of Manchester, England

No system description supplied. However, see the description of Vampire 8.0¡/A¿ for general infor-
mation. Minor changes have been made, including a bugfix in the FOF to CNF conversion.

Expected Competition Performance

Vampire 8.1 is the CASC-21 CNF division winner.

7.18 Vampire 9.0

Andrei Voronkov
University of Manchester, England

No system description supplied.

Expected Competition Performance

Vampire 9.0 is the CASC-21 FOF division winner.

7.19 Waldmeister 806

Thomas Hillenbrand1, Bernd Löchner2

1Max-Planck-Institut für Informatik Saarbrücken, Germany
2Technische Universität Kaiserslautern, Germany

No system description supplied.

Expected Competition Performance

Waldmeister 806 is the CASC-21 UEQ division winner.

7.20 Zenon 0.5.0

Damien Doligez
INRIA, France

29

CASC-J4 Geoff Sutcliffe

Architecture

Zenon 0.5.0 [BDD07] is based on the tableau method with free variables. It uses a nondestructive way
of handling free variables, which enables a purely local search procedure: each branch is closed before
the next one is explored.

Zenon outputs totally formal proofs that can be checked by Coq.

Strategies

Implementation

Zenon is written in Objective Caml. It can be downloaded from http://focal.inria.fr/zenon.

Expected Competition Performance

Zenon is still in the prototype stage and we don’t really expect brilliant results at this point.

8 Conclusion

The 4th IJCAR ATP System Competition is the thirteenth large scale competition for classical first-order
logic ATP systems. The organizers believe that CASC fulfills its main motivations: stimulation of re-
search, motivation for improving implementations, evaluation of relative capabilities of ATP systems,
and providing an exciting event. Through the continuity of the event and consistency in the the reporting
of the results, performance comparisons with previous and future years are easily possible. The compe-
tition provides exposure for system builders both within and outside of the community, and provided an
overview of the implementation state of running, fully automatic, first order ATP systems.

References

[BDD07] R. Bonichon, D. Delahaye, and D. Doligez. Zenon : An Extensible Automated Theorem Prover
Producing Checkable Proofs. In N. Dershowitz and A. Voronkov, editors, Proceedings of the 14th
International Conference on Logic for Programming, Artificial Intelligence, and Reasoning, number
4790 in Lecture Notes in Artificial Intelligence, pages 151–165, 2007.

[BFN96] P. Baumgartner, U. Furbach, and I. Niemelä. Hyper Tableaux. In J. Alferes, L. Pereira, and E. Or-
lowska, editors, Proceedings of JELIA’96: European Workshop on Logic in Artificial Intelligence,
number 1126 in Lecture Notes in Artificial Intelligence, pages 1–17. Springer-Verlag, 1996.

[BFP07] P. Baumgartner, U. Furbach, and B. Pelzer. Hyper Tableaux with Equality. In F. Pfenning, editor,
Proceedings of the 21st International Conference on Automated Deduction, number 4603 in Lecture
Notes in Artificial Intelligence, pages 492–507. Springer-Verlag, 2007.

[BFT04] P. Baumgartner, A. Fuchs, and C. Tinelli. Darwin - A Theorem Prover for the Model Evolution Cal-
culus. In G. Sutcliffe, S. Schulz, and T. Tammet, editors, Proceedings of the Workshop on Empirically
Successful First Order Reasoning, 2nd International Joint Conference on Automated Reasoning, 2004.

[BFT06a] P. Baumgartner, A. Fuchs, and C. Tinelli. Implementing the Model Evolution Calculus. International
Journal on Artificial Intelligence Tools, 15(1):21–52, 2006.

[BFT06b] P. Baumgartner, A. Fuchs, and C. Tinelli. Lemma Learning in the Model Evolution Calculus. In
M. Hermann and A. Voronkov, editors, Proceedings of the 13th International Conference on Logic
for Programming, Artificial Intelligence, and Reasoning, number 4246 in Lecture Notes in Artificial
Intelligence, pages 572–585, 2006.

30

http://focal.inria.fr/zenon

CASC-J4 Geoff Sutcliffe

[BG98] L. Bachmair and H. Ganzinger. Equational Reasoning in Saturation-Based Theorem Proving. In
W. Bibel and P.H. Schmitt, editors, Automated Deduction, A Basis for Applications, volume I Foun-
dations - Calculi and Methods of Applied Logic Series, pages 352–397. Kluwer Academic Publishers,
1998.

[BKL+08] J. Bongio, C. Katrak, H. Lin, C. Lynch, and R. McGregor. Encoding First Order Proofs in SMT.
In S. Krstic and A. Oliveras, editors, Proceedings of the 5th International Workshop on Satisfiability
Modulo Theories, volume 198 of Electronic Notes in Theoretical Computer Science, pages 71–84,
2008.

[Ble71] W.W. Bledsoe. Splitting and Reduction Heuristics in Automatic Theorem Proving. Artificial Intelli-
gence, 2:55–77, 1971.

[BT03] P. Baumgartner and C. Tinelli. The Model Evolution Calculus. In F. Baader, editor, Proceedings of the
19th International Conference on Automated Deduction, number 2741 in Lecture Notes in Artificial
Intelligence, pages 350–364. Springer-Verlag, 2003.

[CS03] K. Claessen and N. Sorensson. New Techniques that Improve MACE-style Finite Model Finding. In
P. Baumgartner and C. Fermueller, editors, Proceedings of the CADE-19 Workshop: Model Computa-
tion - Principles, Algorithms, Applications, 2003.

[DHJ+07] T. Deshane, W. Hu, P. Jablonski, H. Lin, C. Lynch, and R. McGregor. Encoding First Order Proofs in
SAT. In F. Pfenning, editor, Proceedings of the 21st International Conference on Automated Deduc-
tion, number 4603 in Lecture Notes in Artificial Intelligence, pages 476–491. Springer-Verlag, 2007.

[GK03] H. Ganzinger and K. Korovin. New Directions in Instantiation-Based Theorem Proving. In P. Kolaitis,
editor, Proceedings of the 18th IEEE Symposium on Logic in Computer Science, pages 55–64, 2003.

[GK04] H. Ganzinger and K. Korovin. Integrating Equational Reasoning into Instantiation-Based Theorem
Proving. In J. Marcinkowski and A. Tarlecki, editors, Proceedings of the 18th International Workshop
on Computer Science Logic, 13th Annual Conference of the EACSL, number 3210 in Lecture Notes in
Computer Science, pages 71–84, 2004.

[GS96] M. Greiner and M. Schramm. A Probablistic Stopping Criterion for the Evaluation of Benchmarks.
Technical Report I9638, Institut für Informatik, Technische Universität München, München, Germany,
1996.

[Hur03] J. Hurd. First-Order Proof Tactics in Higher-Order Logic Theorem Provers. In M. Archer, B. Di Vito,
and C. Munoz, editors, Proceedings of the 1st International Workshop on Design and Application
of Strategies/Tactics in Higher Order Logics, number NASA/CP-2003-212448 in NASA Technical
Reports, pages 56–68, 2003.

[Kor08a] K. Korovin. An Invitation to Instantiation-Based Reasoning: From Theory to Practice. In A. Podelski,
A. Voronkov, and R. Wilhelm, editors, Volume in Memoriam of Harald Ganzinger. Springer-Verlag,
2008.

[Kor08b] K. Korovin. iProver - An Instantiation-Based Theorem Prover for First-order Logic (System Descrip-
tion). In P. Baumgartner, A. Armando, and D. Gilles, editors, Proceedings of the 4th International
Joint Conference on Automated Reasoning, Lecture Notes in Artificial Intelligence, 2008.

[Loe04] B. Loechner. What to Know When Implementing LPO. In G. Sutcliffe, S. Schulz, and T. Tammet, edi-
tors, Proceedings of the Workshop on Empirically Successful First Order Reasoning, 2nd International
Joint Conference on Automated Reasoning, 2004.

[McC94a] W.W. McCune. A Davis-Putnam Program and its Application to Finite First-Order Model Search:
Quasigroup Existence Problems. Technical Report ANL/MCS-TM-194, Argonne National Laboratory,
Argonne, USA, 1994.

[McC94b] W.W. McCune. Otter 3.0 Reference Manual and Guide. Technical Report ANL-94/6, Argonne Na-
tional Laboratory, Argonne, USA, 1994.

[McC03] W.W. McCune. Otter 3.3 Reference Manual. Technical Report ANL/MSC-TM-263, Argonne National
Laboratory, Argonne, USA, 2003.

[MW97] W.W. McCune and L. Wos. Otter: The CADE-13 Competition Incarnations. Journal of Automated
Reasoning, 18(2):211–220, 1997.

[OB03] J. Otten and W. Bibel. leanCoP: Lean Connection-Based Theorem Proving. Journal of Symbolic

31

CASC-J4 Geoff Sutcliffe

Computation, 36(1-2):139–161, 2003.
[Ott08a] J. Otten. Restricting Backtracking in Connection Calculi. Technical Report Technical Report, Institut

für Informatik, University of Potsdam, Potsdam, Germany, 2008.
[Ott08b] J. Otten. leanCoP 2.0 and ileancop 1.2: High Performance Lean Theorem Proving in Classical

and Intuitionistic Logic. In P. Baumgartner, A. Armando, and D. Gilles, editors, Proceedings of the
4th International Joint Conference on Automated Reasoning, Lecture Notes in Artificial Intelligence,
2008.

[Pas78] D. Pastre. Automatic Theorem Proving in Set Theory. Artificial Intelligence, 10:1–27, 1978.
[Pas89] D. Pastre. Muscadet : An Automatic Theorem Proving System using Knowledge and Metaknowledge

in Mathematics. Artificial Intelligence, 38:257–318, 1989.
[Pas93] D. Pastre. Automated Theorem Proving in Mathematics. Annals of Mathematics and Artificial Intelli-

gence, 8:425–447, 1993.
[Pas01] D. Pastre. Muscadet version 2.3 : User’s Manual. http://www.math-info.univ-

paris5.fr/ pastre/muscadet/manual-en.ps, 2001.
[Pas02] D. Pastre. Strong and Weak Points of the Muscadet Theorem Prover. AI Communications, 15(2-

3):147–160, 2002.
[Pas07] D. Pastre. Complementarity of a Natural Deduction Knowledge-based Prover and Resolution-based

Provers in Automated Theorem Proving. http://www.math-info.univ-paris5.fr/ pastre/compl-NDKB-
RB.pdf, 2007.

[PW07] B. Pelzer and C. Wernhard. System Description: E-KRHyper. In F. Pfenning, editor, Proceedings of
the 21st International Conference on Automated Deduction, number 4603 in Lecture Notes in Artificial
Intelligence, pages 508–513. Springer-Verlag, 2007.

[PZ00] D.A. Plaisted and Y. Zhu. Ordered Semantic Hyper-linking. Journal of Automated Reasoning,
25(3):167–217, 2000.

[RO08] T. Raths and J. Otten. randoCoP: Randomizing the Proof Search Order in the Connection Calculus.
In R. Schmidt, B. Konev, and S. Schulz, editors, Proceedings of the Workshop on Practical Aspects of
Automated Reasoning, 4th International Joint Conference on Automated Reasoning, page Accepted,
2008.

[Sch02] S. Schulz. A Comparison of Different Techniques for Grounding Near-Propositional CNF Formulae.
In S. Haller and G. Simmons, editors, Proceedings of the 15th International FLAIRS Conference, pages
72–76. AAAI Press, 2002.

[Sch04a] S. Schulz. Simple and Efficient Clause Subsumption with Feature Vector Indexing. In G. Sutcliffe,
S. Schulz, and T. Tammet, editors, Proceedings of the Workshop on Empirically Successful First Order
Reasoning, 2nd International Joint Conference on Automated Reasoning, 2004.

[Sch04b] S. Schulz. System Abstract: E 0.81. In M. Rusinowitch and D. Basin, editors, Proceedings of the 2nd
International Joint Conference on Automated Reasoning, number 3097 in Lecture Notes in Artificial
Intelligence, pages 223–228, 2004.

[SGS07] M. Streeter, D. Golovin, and S.F. Smith. Combining Multiple Heuristics Online. In R.C. Holte and
A. Howe, editors, Proceedings of the 22nd Conference on Artificial Intelligence, pages 1197–1203.
AAAI Press, 2007.

[SS97a] G. Sutcliffe and C.B. Suttner. Special Issue: The CADE-13 ATP System Competition. Journal of
Automated Reasoning, 18(2), 1997.

[SS97b] G. Sutcliffe and C.B. Suttner. The Procedures of the CADE-13 ATP System Competition. Journal of
Automated Reasoning, 18(2):163–169, 1997.

[SS97c] C.B. Suttner and G. Sutcliffe. The Design of the CADE-13 ATP System Competition. Journal of
Automated Reasoning, 18(2):139–162, 1997.

[SS98a] G. Sutcliffe and C. Suttner. The CADE-14 ATP System Competition. Technical Report 98/01, Depart-
ment of Computer Science, James Cook University, Townsville, Australia, 1998.

[SS98b] G. Sutcliffe and C.B. Suttner. Proceedings of the CADE-15 ATP System Competition. Lindau, Ger-
many, 1998.

32

CASC-J4 Geoff Sutcliffe

[SS98c] G. Sutcliffe and C.B. Suttner. The TPTP Problem Library: CNF Release v1.2.1. Journal of Automated
Reasoning, 21(2):177–203, 1998.

[SS98d] C.B. Suttner and G. Sutcliffe. The CADE-14 ATP System Competition. Journal of Automated Rea-
soning, 21(1):99–134, 1998.

[SS99] G. Sutcliffe and C.B. Suttner. The CADE-15 ATP System Competition. Journal of Automated Rea-
soning, 23(1):1–23, 1999.

[SS01] G. Sutcliffe and C.B. Suttner. Evaluating General Purpose Automated Theorem Proving Systems.
Artificial Intelligence, 131(1-2):39–54, 2001.

[SS03] G. Sutcliffe and C. Suttner. The CADE-18 ATP System Competition. Journal of Automated Reasoning,
31(1):23–32, 2003.

[SS04] G. Sutcliffe and C. Suttner. The CADE-19 ATP System Competition. AI Communications, 17(3):103–
182, 2004.

[SSP02] G. Sutcliffe, C. Suttner, and F.J. Pelletier. The IJCAR ATP System Competition. Journal of Automated
Reasoning, 28(3):307–320, 2002.

[Sut99] G. Sutcliffe. Proceedings of the CADE-16 ATP System Competition. Trento, Italy, 1999.
[Sut00a] G. Sutcliffe. Proceedings of the CADE-17 ATP System Competition. Pittsburgh, USA, 2000.
[Sut00b] G. Sutcliffe. The CADE-16 ATP System Competition. Journal of Automated Reasoning, 24(3):371–

396, 2000.
[Sut01a] G. Sutcliffe. Proceedings of the IJCAR ATP System Competition. Siena, Italy, 2001.
[Sut01b] G. Sutcliffe. The CADE-17 ATP System Competition. Journal of Automated Reasoning, 27(3):227–

250, 2001.
[Sut02] G. Sutcliffe. Proceedings of the CADE-18 ATP System Competition. Copenhagen, Denmark, 2002.
[Sut03] G. Sutcliffe. Proceedings of the CADE-19 ATP System Competition. Miami, USA, 2003.
[Sut04] G. Sutcliffe. Proceedings of the 2nd IJCAR ATP System Competition. Cork, Ireland, 2004.
[Sut05a] G. Sutcliffe. Proceedings of the CADE-20 ATP System Competition. Tallinn, Estonia, 2005.
[Sut05b] G. Sutcliffe. The IJCAR-2004 Automated Theorem Proving Competition. AI Communications,

18(1):33–40, 2005.
[Sut06a] G. Sutcliffe. Proceedings of the 3rd IJCAR ATP System Competition. Seattle, USA, 2006.
[Sut06b] G. Sutcliffe. The CADE-20 Automated Theorem Proving Competition. AI Communications,

19(2):173–181, 2006.
[Sut07a] G. Sutcliffe. Proceedings of the CADE-21 ATP System Competition. Bremen, Germany, 2007.
[Sut07b] G. Sutcliffe. The 3rd IJCAR Automated Theorem Proving Competition. AI Communications,

20(2):117–126, 2007.
[Sut08] G. Sutcliffe. The CADE-21 Automated Theorem Proving System Competition. AI Communications,

21(1):71–82, 2008.
[Ull89] J. Ullman. Principles of Database and Knowledge-Base Bystems. Computer Science Press, Inc., 1989.
[Urb07] J. Urban. MaLARea: a Metasystem for Automated Reasoning in Large Theories. In J. Urban, G. Sut-

cliffe, and S. Schulz, editors, Proceedings of the CADE-21 Workshop on Empirically Successful Au-
tomated Reasoning in Large Theories, number 257 in CEUR Workshop Proceedings, pages 45–58,
2007.

[USPV08] J. Urban, G. Sutcliffe, P. Pudlak, and J. Vyskocil. MaLARea SG1: Machine Learner for Automated
Reasoning with Semantic Guidance. In P. Baumgartner, A. Armando, and D. Gilles, editors, Proceed-
ings of the 4th International Joint Conference on Automated Reasoning, Lecture Notes in Artificial
Intelligence, 2008.

[Wer03] C. Wernhard. System Description: KRHyper. Technical Report Fachberichte Informatik 14–2003,
Universität Koblenz-Landau, Koblenz, Germany, 2003.

33

	CoverPage
	CASC-J4
	Introduction
	Divisions
	The Competition Divisions
	The Demonstration Division

	Infrastructure
	Computers
	Problems
	Problem Selection
	Number of Problems
	Problem Preparation, non-LTB divisions
	Problem Preparation, LTB division

	Resource Limits

	System Evaluation
	System Entry
	System Description
	Sample Solutions

	System Requirements
	System Properties
	System Delivery
	System Execution
	System Checks

	The ATP Systems
	CHewTPTP 1.0
	Darwin 1.3
	E and EP 1.0pre
	E-KRHyper 1.1
	Equinox 3.0
	iProver 0.5
	MaLARea 0.3
	MetaProver 1.0
	Metis 2.1
	Muscadet 3.0
	OSHL-S 0.1
	Otter 3.3
	Paradox 1.3
	Paradox 2.2 and 3.0
	randoCoP 1.1
	SInE 0.3 and SInE-VD 0.3
	Vampire 8.1
	Vampire 9.0
	Waldmeister 806
	Zenon 0.5.0

	Conclusion

