
E 3.2

User Manual

–preliminary version–

Stephan Schulz

June 11, 2024

Abstract

E is an equational theorem prover for full first-order logic and monomorphic
higher-order logic, based on superposition and rewriting. In this perpetually
preliminary manual we first give a short introduction and basic usage informa-
tion for new users, and then cover calculus and proof procedure. The manual
also covers proof search control and related options, followed by input and out-
put formats. Finally, it describes some additional tools that are part of the E
distribution.

Contents

1 Introduction 2

2 Getting Started 3

3 Calculus and Proof Procedure 5
3.1 Calculus . 5
3.2 Preprocessing . 11
3.3 Proof Procedure . 14

3.3.1 Propositional Reasoning 14

4 Controlling the Proof Search 16
4.1 Search Control Heuristics . 16
4.2 Term Orderings . 22

4.2.1 Precedence Generation Schemes 24
4.2.2 Weight Generation Schemes 25
4.2.3 Literal Comparison . 26

4.3 Literal Selection Strategies . 27
4.4 Controling Propositional Reasoning 28
4.5 The Watchlist Feature . 29
4.6 Learning Clause Evaluation Functions 30
4.7 Other Options . 31

5 Input Language 32
5.1 LOP . 32
5.2 TPTP-2 and TPTP-3 Formats 33
5.3 Higher-order extension . 33

6 Output. . . or how to interpret what you see 35
6.1 The Bare Essentials . 35
6.2 Observing Saturation . 37
6.3 Inference Protocols . 37
6.4 Proofs Objects . 37
6.5 Answers . 38
6.6 Requesting Specific Output . 39

1

7 Additional utilities 41
7.1 Common options . 41
7.2 Grounding: eground . 41
7.3 Rewriting: enormalizer . 43
7.4 Multiple queries: e ltb runner 43

7.4.1 Usage . 44
7.4.2 Batch specification file . 44
7.4.3 Interactive queries . 46

7.5 Specification pruning: e axfilter 46
7.5.1 Filter algorithms . 48
7.5.2 Filter specification . 48

A Acknowledgements 50

B License 51

2

Chapter 1

Introduction

This is a short and currently quite sketchy documentation of the equational
theorem prover E. E is an purely equational theorem prover for full first-order
logic with equality, and, as of E 3.0, for monomorphic higher-order logic. It
is based on paramodulation and rewriting. This means that E reads a set of
formulas and/or clauses and saturates it by systematically applying a number
of inference rules until either all possible (non-redundant) inferences have been
performed or until the empty clause has been derived, i.e. the clause set has
been found to be unsatisfiable and thus the conjecture has been proved.

Even after 20 years, E is still a moving target. However, most recent releases
have been quite stable, and the prover is being used productively by several
independent groups of people. This manual should enable you to experiment
with the prover and to use some of its more advanced features. Be aware that
it often lags behind the implementation. The ultimate reference is the source
code. Also, the help page (produced eprover -h and equivalent to the UNIX
man page delivered with the prover) is always an up-to-date documentation of
the available command line options

The manual assumes a working knowledge of refutational theorem proving,
which can be gained from e.g. [CL73]. The calculus is (mostly) a specialisation
of superposition as described by Bachmair and Ganzinger [BG94].

The primary description of E has been published as [Sch02b], while the
most recent published descriptions are [Sch13] (including the extension to many-
sorted logic) and [SCV19] (including optional extension to LFHO and integra-
tion of PicoSAT). A more extensive description of the LFHO extension can be
found in [VBCS19, VBCS21]. Extensions to full higher order logic are covered
in [VBS23]. Most papers on E and much more information is available at or a
few hops away from the E home page, https://www.eprover.org.

Some other provers have influenced the design of E and may be refer-
enced in the course of this manual. These include SETHEO [MIL+97], Ot-
ter [McC94, MW97], SPASS [WGR96, WAB+99], DISCOUNT [DKS97], Wald-
meister [HBF96, HJL99] and Vampire [RV02, RV01, KV13].

3

Chapter 2

Getting Started

Installation of E should be straightforward, but requires a standard UNIX/Linux
build environment, including /bin/sh, gcc (or an equivalent compiler), and
make. The file README (or, somewhat nicer, README.md) in the main directory of
the distribution contains the necessary information. After configuring and build-
ing the system, you will find the stand-alone executable E/PROVER/eprover, or
E/PROVER/eprover-ho if you configured the system with support for higher-
order logic.

E is controlled by a very wide range of parameters. However, if you do not
want to bother with the details, you can leave configuration for a problem to
the prover. To use this feature, use the following command line options:

4

--satauto Choose literal selection strategy, clause evalua-
tion heuristic, term ordering and other search
parameters automagically, based on problem fea-
tures.

--auto As --satauto, but add heuristic specification
pruning using one of several instantiation of the
SInE algorithm [HV11] for large specifications.
This makes the prover potentially incomplete.

--auto-schedule As --auto, but try not one, but several different
strategies.

--memory-limit=xx Tell the prover how much memory (measured in
MB) to use at most. In automatic mode E will op-
timize its behaviour for this amount (32 MB will
work, 128 MB is reasonable, 1024 MB is what I
use. More is better1, but if you go over your phys-
ical memory, you will probably experience very
heavy swapping.) Due to limitations of rlim t,
values over 2047 may not work on all platforms. If
you have ab up-to-date machine and plan on run-
ning the prover for a few minutes at most, this
has become a lot less critical than in the past.

Example: If you happen to have a workstation with 64 MB RAM2, the
following command is reasonable:

eprover --auto --memory-limit=48 PUZ031-1+rm_eq_rstfp.lop

1Emphasis added for E 0.7 and up, which globally cache rewrite steps.
2Yes, this is outdated. If it still applies to you, get a new computer! It will still work ok,

though.

5

Chapter 3

Calculus and Proof
Procedure

E is a purely equational theorem prover, based on ordered paramodulation and
rewriting. As such, it implements an instance of the superposition calculus
described in [BG94]. We have added some stronger contraction rules and a
more general approach to literal selection, and have also extended the calculus
to simple, monomorphic many-sorted logic (in the sense of the TPTP-3 TFF
format [SSCB12]).

The core proof procedure is a variant of the given-clause algorithm. However,
before proof search in clause normal form (CNF) begins, various transformations
can be applied to the input problem. In particular, E processes not only clausal
problems, but can read full first order format, including a rich set of formula
roles, logical operators and quantifiers. This format is reduced to clause normal
form in a way that the CNF is unsatisfiable if and only if the original problem
is provable (if an explicit conjecture is given) or itself unsatisfiable.

3.1 Calculus

We assume a finite set S = {Si} of sorts (or atomic types), with each sort
interpreted by a non-empty domain disjoint from the domains of all other sorts.
With each sort Si we associate an enumerable set of variables VSi

, with VS∩VT =
∅ if S ̸= T (i.e. each variable has a unique sort). We assume at least two sorts,
$i (individuals) and $o (truth values).

A type is a non-empty tuple (S1, . . . , Sn, T) with T ∈ S and Si ∈ S for all
Si. We usually write a type as (S1, . . . , Sn) → T . The Si are called argument
sorts and T is called the resulting sort.

A signature F is a finite set of function symbols with associated types. We
write f : (S1, . . . , Sn)→ T to indicate that f is of type (S1, . . . , Sn)→ T .

Term(F, V) denotes the set of (sorted first order) terms over F and V,
defined as follows: x ∈ VSi

is a term of sort Si. If f : (S1, . . . , Sn) → T is

6

a function symbol in F and t1, . . . tn are terms of sorts S1, . . . Sn, respectively,
then f(s1, . . . , sn) is a term of sort T . We require that the Si ̸= $o, and call
function symbols with resulting type $o predicate symbols.

We write t|p to denote the subterm of t at a position p and write t[p← t′] to
denote t with t|p replaced by t′. An equation s≃ t is an (implicitly symmetrical)
pair of terms (of the same sort). A positive literal is an equation s ≃ t, a
negative literal is a negated equation s ̸≃ t. We write s≃̇t to denote an arbitrary
literal.1 Literals can be represented as multi-sets of multi-sets of terms, with
s ≃ t represented as {{s}, {t}} and s ̸≃ t represented as {{s, t}}. A ground
reduction ordering > is a Noetherian partial ordering that is stable w.r.t. the
term structure and substitutions and total on ground terms. > can be extended
to an ordering>L on literals by comparing the multi-set representation of literals
with >>>> (the multi-set-multi-set extension of >).

Clauses are multi-sets of literals. They are usually represented as disjunc-
tions of literals, s1≃̇t1∨s2≃̇t2 . . .∨sn≃̇tn. We write Clauses(F ,P ,V) to denote
the set of all clauses with function symbols F , predicate symbols P and vari-
ables V . If C is a clause, we denote the (multi-)set of positive literals in C by
C+ and the (multi-)set of negative literals in C by C− We extend >L to clauses
by defining >C=>L>L, i.e. we compare clauses as multi-sets of literals.

We write s[t ← t′] to denote the term s in which every occurrence of the
subterm t has been replaced by t′. We extend this notion to literals and clauses
(i.e. C[t ← t′] is the clause C in which all occurrences of t have been replaced
by t′).

A substitution is a function σ : V → Term(F, V) with the properties that
|{x ∈ V | σ(x) ̸= x}| ∈ N (i.e. only finitely many variables are substituted) and
that x and σ(x) are terms of the same sort for all x ∈ V . Substitutions are
extended to literals and clauses in the obvious way. A most general unifier of
two terms s and t is a substitution σ with σ(s) = σ(t) and with the property
that no other unifier is more general than σ. If the mgu of two terms exists,
it is unique up to variable renaming, so we usually speak of the most general
unifier of two terms and denote it by mgu(s, t).

In the following, most inferences between clauses are performed at particular
literals of the clauses. Inference literals can be determined the term ordering, or,
sometimes, by selection. The introduction of an extended notion of literal selec-
tion has improved the performance of E significantly. The necessary concepts
are explained in the following.

Definition 3.1.1 (Selection functions)
sel : Clauses(F ,P ,V) → Clauses(F ,P ,V) is a selection function, if it has the
following properties for all clauses C:

1Non-equational literals are encoded as equations or disequations P (t1, . . . , tn)≃̇⊤, where
the resulting sort of P and ⊤ is $o.

In other words, we treat predicate symbols as special function symbols that can only occur
at the top-most positions and demand that atoms (terms formed with a top predicate sym-
bol) cannot be unified with a first-order variable, i.e. we treat normal terms and predicate
terms as disjoint sorts. We sometimes write the literal P (t1, . . . , tn)≃⊤ as P (t1, . . . , tn) and
P (t1, . . . , tn) ̸≃⊤ as ¬P (t1, . . . , tn) for simplicity.

7

• sel(C) ⊆ C.

• If sel(C) ∩ C− = ∅, then sel(C) = ∅.

We say that a literal L is selected (with respect to a given selection function)
in a clause C if L ∈ sel(C). ◀

We will use two kinds of restrictions on deducing new clauses: One induced
by ordering constraints and the other by selection functions. We combine these
in the notion of eligible literals.

Definition 3.1.2 (Eligible literals)
Let C = L ∨ R be a clause, let σ be a substitution and let sel be a selection
function.

• We say σ(L) is eligible for resolution if either

– sel(C) = ∅ and σ(L) is >L-maximal in σ(C) or
– sel(C) ̸= ∅ and σ(L) is >L-maximal in σ(sel(C) ∩ C−) or
– sel(C) ̸= ∅ and σ(L) is >L-maximal in σ(sel(C) ∩ C+).

• σ(L) is eligible for paramodulation if L is positive, sel(C) = ∅ and σ(L) is
strictly >L-maximal in σ(C).

◀

The calculus is represented in the form of inference rules. For convenience, we
distinguish two types of inference rules. For generating inference rules, written
with a single line separating preconditions and results, the result is added to
the set of all clauses. For contracting inference rules, written with a double
line, the result clauses are substituted for the clauses in the precondition. In
the following, u, v, s and t are terms, σ is a substitution and R, S and T are
(partial) clauses. p is a position in a term and λ is the empty or top-position.
D ⊆ F is a set of unused constant predicate symbols. Different clauses are
assumed to not share any common variables.

Definition 3.1.3 (The inference system SP)
Let > be a total simplification ordering (extended to orderings >L and >C

on literals and clauses), let sel be a selection function, and let D be a set of
fresh propositional constants. The inference system SP consists of the following
inference rules:

• Equality Resolution:

(ER)
u ̸≃v ∨R

σ(R)

if σ = mgu(u, v) and σ(u ̸≃
v) is eligible for resolution.

8

• Superposition into negative literals:

(SN)
s≃ t ∨ S u ̸≃v ∨R

σ(u[p← t] ̸≃v ∨ S ∨R)

if σ = mgu(u|p, s), σ(s) ̸<
σ(t), σ(u) ̸< σ(v), σ(s≃ t)
is eligible for paramodula-
tion, σ(u ̸≃v) is eligible for
resolution, and u|p /∈ V .

• Superposition into positive literals:

(SP)
s≃ t ∨ S u≃v ∨R

σ(u[p← t]≃v ∨ S ∨R)

if σ = mgu(u|p, s), σ(s) ̸<
σ(t), σ(u) ̸< σ(v), σ(s≃ t)
is eligible for paramodula-
tion, σ(u≃v) is eligible for
resolution, and u|p /∈ V .

• Simultaneous superposition into negative literals

(SSN)
s≃ t ∨ S u ̸≃v ∨R

σ(S ∨ (u ̸≃v ∨R)[u|p ← t])

if σ = mgu(u|p, s), σ(s) ̸<
σ(t), σ(u) ̸< σ(v), σ(s≃ t)
is eligible for paramodula-
tion, σ(u ̸≃v) is eligible for
resolution, and u|p /∈ V .

This inference rule is an alternative to (SN). Note that the difference is
that every occurrence of the subterm unified with the right-hand side of
the rewriting clause is replaced by the (instance of) the left hand side
in the (instance of) the clause that is rewritten. This single rule usually
performs better than a sequence of conventional superpositions in practice.

• Simultaneous superposition into positive literals

(SSP)
s≃ t ∨ S u≃v ∨R

σ(S ∨ (u≃v ∨R)[u|p ← t])

if σ = mgu(u|p, s), σ(s) ̸<
σ(t), σ(u) ̸< σ(v), σ(s≃ t)
is eligible for paramodula-
tion, σ(u ̸≃v) is eligible for
resolution, and u|p /∈ V .

This inference rule is an alternative to (SP) that performs better in prac-
tice. See the note on the previous rule.

• Equality factoring :

(EF)
s≃ t ∨ u≃v ∨R

σ(t ̸≃v ∨ u≃v ∨R)

if σ = mgu(s, u), σ(t) ̸>
σ(s) and σ(s≃ t) eligible for
paramodulation.

9

• Rewriting of negative literals:

(RN)
s≃ t u ̸≃v ∨R

s≃ t u[p← σ(t)] ̸≃v ∨R
if u|p = σ(s) and σ(s) > σ(t).

• Rewriting of positive literals2:

(RP)
s≃ t u≃v ∨R

s≃ t u[p← σ(t)]≃v ∨R

if u|p = σ(s), σ(s) > σ(t),
and if u≃ v is not eligible for
paramodulation or v > u or
p ̸= λ.

• Clause subsumption:

(CS)
C σ(C ∨R)

C

where C and R are arbitrary
(partial) clauses and σ is a
substitution.

• Equality subsumption:

(ES)
s≃ t u[p← σ(s)]≃u[p← σ(t)] ∨R

s≃ t

• Positive simplify-reflect3:

(PS)
s≃ t u[p← σ(s)] ̸≃u[p← σ(t)] ∨R

s≃ t R

• Negative simplify-reflect

(NS)
s ̸≃ t σ(s) ̸≃σ(t) ∨R

s ̸≃ t R

2A stronger version of (RP) is proven to maintain completeness for Unit and Horn prob-
lems and is generally believed to maintain completeness for the general case as well [Bac98].
However, the proof of completeness for the general case seems to be rather involved, as it re-
quires a very different clause ordering than the one introduced [BG94], and we are not aware
of any existing proof in the literature. The variant rule allows rewriting of maximal terms of
maximal literals under certain circumstances:

(RP’)
s≃ t u≃v ∨R

s≃ t u[p← σ(t)]≃v ∨R

if u|p = σ(s), σ(s) > σ(t) and if u≃
v is not eligible for paramdulation or
u ̸> v or p ̸= λ or σ is not a variable
renaming.

This stronger rule is implemented successfully by both E and SPASS [Wei99].
3In practice, this rule is only applied if σ(s) and σ(t) are >-incomparable – in all other

cases this rule is subsumed by (RN) and the deletion of resolved literals (DR).

10

• Tautology deletion:

(TD)
C

if C is a tautology4

• Deletion of duplicate literals:

(DD)
s≃ t ∨ s≃ t ∨R

s≃ t ∨R

• Deletion of resolved literals:

(DR)
s ̸≃s ∨R

R

• Destructive equality resolution:

(DE)
x ̸≃y ∨R

σ(R)
if x, y ∈ V, σ = mgu(x, y)

• Contextual literal cutting :

(CLC)
σ(C ∨R ∨ s≃̇t) C ∨ s≃̇t
σ(C ∨R) C ∨ s≃̇t

where s≃̇t is the negation of
s≃̇t and σ is a substitution

This rule is also known as subsumption resolution or clausal simplification.

• Condensing :

(CON)
l1 ∨ l2 ∨R

σ(l1 ∨R)

if σ(l1) = σ(l2) and σ(l1 ∨ R)
subsumes l1 ∨ l2 ∨R

• Introduce definition5

(ID)
R ∨ S

d ∨R ¬d ∨ S

if R and S do not share any
variables, d ∈ D has not been
used in a previous definition
and R does not contain any
symbol from D

4This rule can only be implemented approximately, as the problem of recognizing tautolo-
gies is only semi-decidable in equational logic. Current versions of E try to detect tautologies
by checking if the ground-completed negative literals imply at least one of the positive literals,
as suggested in [NN93].

5This rule is always exhaustively applied to any clause, leaving n split-off clauses and one
final link clause of all negative propositions.

11

• Apply definition

(AD)
σ(d ∨R) R ∨ S

σ(d ∨R) ¬d ∨ S

if σ is a variable renaming, R
and S do not share any vari-
ables, d ∈ D and R does not
contain any symbol from D

We write SP(N) to denote the set of all clauses that can be generated with one
generating inference from SP on a set of clauses N , DSP to denote the set of
all SP-derivations, and DSP to denote the set of all finite SP-derivations.

◀

As SP only removes clauses that are composite with respect to the remaining
set of clauses, the calculus is complete. For the case of unit clauses, it degener-
ates into unfailing completion [BDP89] as implemented in DISCOUNT. E can
also simulate the positive unit strategy for Horn clauses described in [Der91]
using appropriate selection functions.

Contrary to e.g. SPASS, E does not implement special rules for non-equa-
tional literals or sort theories. Non-equational literals are encoded as equations
and dealt with accordingly.

3.2 Preprocessing

Axiom Filtering

Real-life axiom sets have grown steadily over the last years. One increasing
application for deduction is e.g. the answering of questions based on large
common-sense ontologies. Such specifications can contain from several thousand
to several million input axioms, only a small part of which are necessary for any
given query.

To avoid swamping the inference engine with most likely irrelevant facts, E
implements two different filtering mechanisms. Both start with the conjecture,
select facts that are likely connected to the conjecture, and then recursively
apply this process again.

• Classical relevancy pruning starts with the function and predicate sym-
bols in the goal. Every axiom that shares such a symbol is considered
relevant. Symbols in relevant axioms become relevant themselves. The
process is then repeated for a selected number of iterations. The option
--rel-pruning-level determines how many iterations are performed.
Relevance pruning is complete in the non-equational case if allowed to
reach a fixed point. It only provides a relatively coarse measure, however.

• More fine-grained control is offered by the SInE method [HV11]. SInE
does not consider all symbols in already selected clauses and formulas to
be relevant, but defines a D-relation that determines which symbols to
consider relevant. E implements a frequency-based D-relation: in every

12

clause or formula, the least frequently occurring symbols are considered
relevant.

SInE in E is controlled via the option --sine. It takes as its argument
either the name of a predefined SInE filter specification, or a newly defined
strategy. The default is equivalent to --sine=Auto and will automatically
determine if axiom filtering should be applied, and if yes, which filter
should be applied. Filter selection is based on a number of features of
the problem specification, and on performance of different filters on the
TPTP problem library.

A SInE-Filter for E is specified as follows:

<sine-filter> ::= GSinE(<g-measure>,

hypos|nohypos,

<benvolvence>,

<generosity>,

<rec-depth>,

<set-size>,

<set-fraction> [,

addnosymb|ignorenosymb])

– <g-measure> is the generality measure. Currently, CountFormulas
and CountTerms are supported. The first considers a symbol more
general than another if it occurse in more formulas. The second
counts the number of subterms which contain the symbol as the top
symbol.

– hypos or nohypos determines if clauses and formulas of type hypo-

thesis are used as additional seeds for the analysis.

– <benevolence> is a floating point value that determines how much
more general a function symbol in a clause or formula is allowed
to be relative to the least general one to be still considered for the
D-relation.

– <generosity> is an integer count and determines how many symbols
are maximally considered for the D-relation of each clause or formula.

– <rec-depth> determines the maximal number of iterations of the
selection algorithm.

– <set-size> gives an absolute upper bound for the number of clauses
and formulas selected.

– set-fraction gives a relative size (which fraction of clauses/formulas)
will be at most selected

– Finally, the optional last argument determines if clauses or formulas
which do not contain any function- or predicate symbols pass the
filter. This is a rare occurence, so the effect is minor in either case.

13

Clausification

E converts problems in full FOF into clause normal form using a slightly simpli-
fied version of the algorithm described by Nonnengart and Weidenbach [NW01].
E’s algorithm has the following modifications:

• E supports the full set of first-order connectives defined in the TPTP-3
language.

• E is more eager about introducing definitions to keep the CNF from
exponential explosion. E will introduce a definition for a sub-formula,
if it can determine that it will be duplicated more than a given num-
ber of times in the naive output. The limit can be set with the option
--definitional-cnf. E will reuse definitions generated for one input for-
mula for syntactically identical formulae in other formulas with the same
specification.

• E supports mini-scoping, but not the more advanced forms of Skolemiza-
tion.

It is possible to use E as a clausifier only. When given the --cnf option, E
will just perform clausification and print the resulting clause set.

Equational Definition unfolding

Equational definitions are unit clauses of the form f(X1, . . . , Xn) = t, where f
does not occur in t, and all variables in t are also in f . In this case, we can
completely replace all occurrences of f by the properly instantiated t. This
reduces the size of the search space, but can increase the size of the input
specification. In particular in the case of nested occurrences of f , this increase
can be significant.

E controls equational definition unfolding with the following options:
--eq-unfold-limit=<arg> limits unfolding (and removing) of equational

definitions to those where the expanded definition is at most the given limit
bigger (in terms of standard term weight) than the defined term.

--eq-unfold-maxclauses=<arg> inhibits unfolding of equational definitions
if the problem has more than the stated limit of clauses.

--no-eq-unfolding disables equational definition unfolding completely.

Presaturation Interreduction

If the option --presat-simplify is set, E will perform an inital interreduction
of the clause set. It will exhaustively apply simplifying inferences by running
its main proof procedure while disabling generating inferences.

Some problems can be solved purely by simplification, without the need for
deducing new clauses via the expensive application of the generating inference
rules, in particularly paramodulation/superposition. Moreover, exhaustive ap-
plication of simplifying inferences can reduce redundancy in the specification

14

and allows all input clauses to be evaluated under the same initial conditions.
On the down side, a complete interreduction of the input problem can take
significant time, especially for large specifications.

3.3 Proof Procedure

Fig. 3.1 shows a (slightly simplified) pseudocode sketch of the quite straightfor-
ward proof procedure of E. The set of all clauses is split into two sets, a set P of
processed clauses and a set U of unprocessed clauses. Initially, all input clauses
are in in U, and P is empty. In its normal mode of operation, at each iteration of
the look the algorithm selects a new clause (sometimes called the given clause)
from U, simplifies it w.r.t. to P, then uses it to back-simplify the clauses in P in
turn. It then performs equality factoring, equality resolution and superposition
between the selected clause and the set of processed clauses. The generated
clauses are simplified and added to the set of unprocessed clauses. The process
stops when the empty clause is derived or no further inferences are possible.

The proof search is controlled by three major parameters: The term ordering
(described in section 4.2), the literal selection function, and the order in which
the select operation selects the next given clause to process.

E implements two different classes of term orderings, lexicographic term or-
derings and Knuth-Bendix orderings. A given ordering is determined by instan-
tiating one of the classes with a variety of parameters (described in section 4.2).

Literal selection currently is done according to one of more than 50 prede-
fined functions. Section 4.3 describes this feature.

Clause selection is determined by a heuristic evaluation function, which con-
ceptually sets up a set of priority queues and a weighted round robin scheme
that determines from which queue the next clause is to be picked. The order
within each queue is determined by a priority function (which partitions the
set of unprocessed clauses into one or more subsets) and a heuristic evaluation
function, which assigns a numerical rating to each clause. Section 4.1 describes
the user interface to this mechanism.

3.3.1 Propositional Reasoning

As of E 2.1, and with a more refined implementation in E 2.2, the prover sup-
ports efficient propositional reasoning by integrating PicoSAT [Bie08]. The
prover periodically grounds all clauses in the proof state and encodes the set of
ground clauses for the propositional solver. If the propositional solver finds a
proof for unsatisfiability of the ground problem, Herbrand’s theorem allow us
to lift this to the first-order level. In the implementation, the prover extract the
unsatisfiable core of the grounded clause set, retrieves the corresponding first-
order clauses, and adds an suitable pseudo-inference to the first-order proof
objects. A more detailed description is available in [Sch18].

See section 4.4 for options controlling this feature.

15

Input: Axioms in U, P is empty

while U ̸= ∅ begin

First check for propositional unsat (Section 3.3.1)

if prop trigger(U,P)

if prop unsat check(U,P)

SUCCESS, Proof found

c := select(U)

U := U \ {c}
Apply (RN), (RP), (NS), (PS), (CLC), (DR), (DD), (DE)

simplify(c,P)

Apply (CS), (ES), (TD)

if c is trivial or subsumed by P then

Delete/ignore c

else if c is the empty clause then

Success: Proof found

stop

else

T := ∅ # Temporary clause set

foreach p ∈ P do

if p can be simplified with c

P := P \ {p}
U := U \ {d|d is direct descendant of p}
T := T ∪ {p}

done

end

P := P ∪ {c}
T := T ∪ e-resolvents(c) # (ER)

T := T ∪ e-factors(c) # (EF)

T := T ∪ paramodulants(c,P) # (SN), (SP)

T’ := {}
foreach p ∈ T do

Apply efficiently implemented subset of (RN),

(RP), (NS), (PS), (CLC), (DR), (DD), (DE)

p := cheap simplify(p, P)

Apply (TD) or efficient approximation of it

if p is trivial

Delete/ignore p

else

T’ := T’ ∪ cheap simplify(p, P)

fi

end

U := U ∪ T’

fi

end

Failure: Initial U is satisfiable, P describes model

Figure 3.1: Main proof procedure of E

16

Chapter 4

Controlling the Proof
Search

This section describes some of the different options available to control the search
of the main proof procedure. The three most important choice points in the
proof search are the choice of term ordering , the selection of the given clause for
any iteration of the main loop, and the (optional) selection of inference literals.
In addition to these major choice points, there are a large number of additional
selections of lesser, but not insigificant importance.

4.1 Search Control Heuristics

Search control heuristics define the order in which the prover considers newly
generated clauses. A heuristic is defined by a set of clause evaluation functions
and a selection scheme which defines how many clauses are selected according
to each evaluation function. A clause evaluation function consists of a priority
function and an instance of a generic weight function.

Priority functions

Priority functions define a partition on the set of clauses. A single clause evalua-
tion consists of a priority (which is the first selection criteria) and an evaluation.
Priorities are usually not suitable to encode heuristic control knowledge, but
rather are used to express certain elements of a search strategy, or to restrict
the effect of heuristic evaluation functions to certain classes of clauses. It is
quite trivial to add a new priority function to E, so at any time there probably
exist a few not yet documented here.

Syntactically, a large subset of currently available priority functions is de-
scribed by the following rule:

<prio-fun> ::= PreferGroundGoals ||

17

PreferUnitGroundGoals ||

PreferGround ||

PreferNonGround ||

PreferProcessed ||

PreferNew ||

PreferGoals ||

PreferNonGoals ||

PreferUnits ||

PreferNonUnits ||

PreferHorn ||

PreferNonHorn ||

ConstPrio ||

ByLiteralNumber ||

ByDerivationDepth ||

ByDerivationSize ||

ByNegLitDist ||

ByGoalDifficulty ||

SimulateSOS||

PreferHorn||

PreferNonHorn||

PreferUnitAndNonEq||

DeferNonUnitMaxEq||

ByCreationDate||

PreferWatchlist||

DeferWatchlist

The priority functions are interpreted as follows:

PreferGroundGoals: Always prefer ground goals (all negative clauses without
variables), do not differentiate between all other clauses.

PreferUnitGroundGoals: Prefer unit ground goals.

PreferGround: Prefer clauses without variables.

PreferNonGround: Prefer clauses with variables.

PreferProcessed: Prefer clauses that have already been processed once and
have been eliminated from the set of processed clauses due to interreduc-
tion (forward contraction).

PreferNew: Prefer new clauses, i.e. clauses that are processed for the first time.

PreferGoals: Prefer goals (all negative clauses).

PreferNonGoals: Prefer non goals, i.e. facts with at least one positive literal.

PreferUnits: Prefer unit clauses (clauses with one literal).

PreferNonUnits: Prefer non-unit clauses.

18

PreferHorn: Prefer Horn clauses (clauses with no more than one positive liter-
als).

PreferNonHorn: Prefer non-Horn clauses.

ConstPrio: Assign the same priority to all clauses.

ByLiteralNumber: Give a priority according to the number of literals, i.e. al-
ways prefer a clause with fewer literals to one with more literals.

ByDerivationDepth: Prefer clauses which have a short derivation depth, i.e.
give a priority based on the length of the longest path from the clause to
an axiom in the derivation tree. Counts generating inferences only.

ByDerivationSize: Prefer clauses which have been derived with a small num-
ber of (generating) inferences.

ByNegLitDist: Prefer goals to non-goals. Among goals, prefer goals with fewer
literals and goals with ground literals (more exactly: the priority is in-
creased by 1 for a ground literal and by 3 for a non-ground literal. Clauses
with lower values are selected before clauses with higher values).

ByGoalDifficulty: Prefer goals to non-goals. Select goals based on a simple
estimate of their difficulty: First unit ground goals, then unit goals, then
ground goals, then other goals.

SimulateSOS: Use the priority system to simulate Set-Of-Support. This prefers
all initial clauses and all Set-Of-Support clauses. Some non-SOS-clauses
will be generated, but not selected for processing. This is neither well
tested nor a particularly good fit with E’s calculus, but can be used as
one among many heuristics. If you try a pure SOS strategy, you also should
set --restrict-literal-comparisons and run the prover without literal
selection enabled.

PreferHorn: Prefer Horn clauses (note: includes units).

PreferNonHorn: Prefer non-Horn clauses.

PreferUnitAndNonEq: Prefer all unit clauses and all clauses without equational
literal. This was an attempt to model some restricted calculi used e.g. in
Gandalf [Tam97], but did not quite work out.

DeferNonUnitMaxEq: Prefer everything except for non-unit clauses with a max-
imal equational literal (“Don’t paramodulate if it is to expensive”). See
above, same result.

ByCreationDate: Return the creation date of the clause as priority. This im-
poses a FIFO equivalence class on clauses. Clauses generated from the
same given clause are grouped together (and can be ordered with any
evaluation function among each other).

19

PreferWatchlist Prefer clauses on the watchlist (see 4.5).

DeferWatchlist Defer clauses on the watchlist (see above).

Please note that careless use of certain priority functions can make the prover
incomplete for the general case.

Generic Weight Functions

Generic weight functions are templates for functions taking a clause and return-
ing a weight (i.e. an estimate of the usefulness) for it, where a lower weight
means that the corresponding clause should be processed before a clause with
a higher weight. A generic weight function is combined with a priority function
and instantiated with a set of parameters to yield a clause evaluation function.

You can specify an instantiated generic weight function as described in this
rule1:

<weight-fun> ::= Clauseweight ’(’ <prio-fun> ’, <int>, <int>,

<float> ’)’ ||

Refinedweight ’(’ <prio-fun> ’, <int>, <int>,

<float>, <float>, <float> ’)’ ||

Orientweight ’(’ <prio-fun>, <int>, <int>,

<float>, <float>, <float> ’)’ ||

Simweight ’(’ <prio-fun>, <float>, <float>,

<float>, <float> ’)’ ||

FIFOWeight ’(’ <prio-fun> ’)’ ||

LIFOWeight ’(’ <prio-fun> ’)’ ||

FunWeight ’(’ <prio-fun> ’, <int>, <int>,

<float>, <float>, <float>

(, <fun> : <posint>)* ’)’ ||

SymOffsetWeight ’(’ <prio-fun> ’, <int>, <int>,

<float>, <float>, <float>

(, <fun> : <int>)* ’)’

Clauseweight(prio, fweight, vweight, pos mult): This is the basic sym-
bol counting heuristic. Variables are counted with weight vweight, function
symbols with weight fweight. The weight of positive literals is multiplied by
pos mult before being added into the final weight.

Refinedweight(prio, fweight, vweight, term pen, lit pen, pos mult):
This weight function is very similar to the first one. It differs only in that it
takes the effect of the term ordering into account. In particular, the weight of
a term that is maximal in its literal is multiplied by term pen, and the weight
of maximal literals is multiplied by lit pen.

Orientweight(prio, fweight, vweight, term pen, lit pen, pos mult):
This weight function is a slight variation of Refinedweight(). In this case,

1Note that there now are many additional generic weight functions not yet documented.

20

the weight of both terms of an unorientable literal is multiplied by a penalty
term pen.

Simweight(prio, equal weight, vv clash, vt clash, tt clash): This
weight function is intended to return a low weight for literals in which the
two terms are very similar. It does not currently work very well even for unit
clauses – RTFS (in <che simweight.c>) to find out more.

FIFOWeight(prio): This weight function assigns weights that increase in a
strictly monotonic manner, i.e. it realizes a first-in/first-out strategy if used all
by itself. This is the most obviously fair strategy.

LIFOWeight(prio): This weight function assigns weights that decrease in a
strictly monotonic manner, i.e. it realizes a last-in/first-out strategy if used all
by itself (which, of course, would be unfair and result in an extremely incomplete
prover).

FunWeight(prio, fweight, vweight, term pen, lit pen, pos mult,

fun:fweight ...): This evaluation function is a variant of Refinedweight.
The first 6 parameter are identical in meaning. The function takes an arbitrary
number of extra parameters of the form fun:fweight, where fun is any valid
function symbol, and fweight is a non-negative integer. The extra weight
assignments will overwrite the default weight for the listed function symbol.

SymOffsetWeight(prio, fweight, vweight, term pen, lit pen,

pos mult, fun:fweight ...): This evaluation function is similar to
FunWeight. The first 6 parameter are identical in meaning. The extra
arguments allow both positive and negative values, and are used as once-off
weight modifiers added to the weight of all clauses that contain the defined
symbol.

Example: (see next section for more context)

eprover -D "myfunw =

FunWeight(ConstPrio,2,1,1,1,1,f:2,g:5,j:3,a:0,b:0)" ...

Clause Evaluation Functions

A clause evaluation function is constructed by instantiating a generic weight
function. It can either be specified directly, or specified and immediately given
a name for later reference :

<eval-fun> ::= <ident> ||

<weight-fun> ||

<eval-fun-def>

<eval-fun-def> ::= <ident> = <weight-fun>

<eval-fun-def-list> ::= <eval-fun-def>*

21

Of course a single identifier is only a valid evaluation function if it has been
previously defined in a <eval-fun-def>. It is possible to define the value of
an identifier more than once, in which case later definitions take precedence to
former ones.

Clause evaluation functions can be be defined on the command line with the
-D (--define-weight-function) option, followed by a <eval-fun-def-list>.

Example:

eprover -D"ex1=Clauseweight(ConstPrio,2,1,1) \

ex2=FIFOWeight(PreferGoals)" ...

sets up the prover to know about two evaluation function ex1 and ex2

(which supposedly will be used later on the command line to define one or
more heuristics). The double quotes are necessary because the brackets
and the commas are special characters for most shells

There are a variety of clause evaluation functions predefined in the variable
DefaultWeightFunctions, which can be found in che proofcontrol.c. See
also sections 4.5 and 4.6, which cover some of the more complex weight functions
of E.

Heuristics

A heuristic defines how many selections are to be made according to one of
several clause evaluation functions. Syntactically,

<heu-element> ::= <int> ’*’ <eval-fun>||

<int> ’.’ <eval-fun>

<heuristic> ::= ’(’ <heu-element> (,<heu-element>)* ’)’ ||

<ident>

<heuristic-def> ::= <ident> = <heuristic> ||

<heuristic>

As above, a single identifier is only a valid heuristic if it has been defined in
<heuristic-def> previously (although a number of such named heuristics are
predefined by the prover). A <heuristic-def> which degenerates to a simple
heuristic defines a heuristic with name Default (which the prover will automat-
ically choose if no other heuristic is selected with -x (--expert-heuristic). E
allows both the multiplication operator (*) and a simple full stop to specify the
weight given to a single evaluation function.2

Example: To continue the above example,

2* is the original syntax, but is hard to escape in some shells, especially if parameter are
handed through several shell scripts.

22

eprover -D"ex1=Clauseweight(ConstPrio,2,1,1) \

ex2=FIFOWeight(PreferGoals)"

-H"new=(3*ex1,1*ex2)" \

-x new LUSK3.lop

will run the prover on a problem file named LUSK3.lop with a heuristic
that chooses 3 out of every 4 clauses according to a simple symbol count-
ing heuristic and the last clause first among goals and then among other
clauses, selecting by order of creation in each of these two classes.

4.2 Term Orderings

E currently supports two families of orderings: The Knuth-Bendix-Ordering
(KBO), which is used by default, and the Lexicographical Path Ordering (LPO).
The KBO is weight-based and uses a precedence on function symbols to break
ties. Consequently, to specify a concrete KBO, we need a weight function that
assigns a weight to all function symbols, and a precedence on those symbols.

The LPO is based on a lexicographic comparison of symbols and subterms,
and is fully specified by giving just a precedence.

Currently it is possible to explicitly specify an arbitrary (including incom-
plete or empty) precedence, or to use one of several precedence generating
schemes. Similarly, there is a number of predefined weight functions and the
ability to assign arbitrary weights to function and predicate symbols.

The simplest way to get a reasonable term ordering is to specify automatic
ordering selection using the -tAuto option.
Options controlling the choice of term ordering:

-term-ordering=<arg>

-t<arg> Select a term ordering class (or automatic selection). Sup-
ported arguments are at least LPO, LPO4 (for a much faster new
implementation of LPO), KBO, and Auto. If Auto is selected,
all aspects of the term ordering are fixed, and additional op-
tions about the ordering will be (or at least should be) silently
ignored.

--order-precedence-generation=<arg>

-G <arg> Select a precedence generation scheme (see below).

--order-weight-generation=<arg>

-w <arg> Select a symbol weight function (see below).

--order-constant-weight=<arg>

-c <arg> Modify any symbol weight function by assigning a special
weight to constant function symbols.

23

--precedence[=<arg>]

Describe a (partial) precedence for the term ordering. The ar-
gument is a comma-separated list of precedence chains, where
a precedence chain is a list of function symbols (which all
have to appear in the proof problem), connected by >, <, or
= (to denote equivalent symbols). If this option is used in
connection with --order-precedence-generation, the par-
tial ordering will be completed using the selected method,
otherwise the prover runs with a non-ground-total ordering.
The option without the optional argument is equivalent to
--precedence= (the empty precedence). There is a drawback
to using --precedence: Normally, total precedences are rep-
resented by mapping symbols to a totally ordered set (small
integers) which can be compared using standard machine in-
structions. The used data structure is linear in the number n
of function symbols. However, if --precedence is used, the
prover allocates (and completes) a n × n lookup table to effi-
ciently represent an arbitrary partial ordering. If n is very big,
this matrix takes up significant space, and takes a long time
to compute in the first place. This is unlikely to be a problem
unless there are at least hundreds of symbols.

--order-weights=<arg>

Give explicit weights to function symbols. The argument syn-
tax is a comma-separated list of items of the form f:w, where
f is a symbol from the specification, and w is a non-negative
integer. Note that at best very simple checks are performed,
so you can specify weights that do not obey the KBO weight
constraints. Behaviour in this case is undefined. If all your
weights are positive, this is unlikely to happen.
Since KBO needs a total weight function, E always uses a
weight generation scheme in addition to the user-defined op-
tions. You may want to use -wconstant for predictable
behaviour.

24

--lpo-recursion-limit[=<arg>]

Limits the recursion depth of LPO comparison. This is useful
in rare cases where very large term comparisons can lead to
stack overflow issues. It does not change completeness, but
may lead to unnecessary inferences in rare cases (Note: By
default, recursion depth is limited to 1000. To get effectively
unlimited recursion depth, use this option with an outrageously
large argument. Don’t forget to increase process stack size with
limit/ulimit from your favourite shell).

4.2.1 Precedence Generation Schemes

Precedence generation schemes are based on syntactic features of the sym-
bol and the input clause set, like symbol arity or number of occurrences in
the formula. At least the following options are supported as argument to
--order-precedence-generation:

unary first: Sort symbols by arity, with the exception that unary symbols
come first. Frequency is used as a tie breaker (rarer symbols are greater).

unary freq: Sort symbols by frequency (rarer symbols are bigger), with the
exception that unary symbols come first. Yes, this should better be named
unary invfreq for consistency, but is not. . .

arity: Sort symbols by arity (symbols with higher arity are larger).

invarity: Sort symbols by arity (symbols with higher arity are smaller).

const max: Sort symbols by arity (symbols with higher arity are larger), but
make constants the largest symbols. This is allegedly used by SPASS [Wei01]
in some configurations.

const min: Sort symbols by arity (symbols with higher arity are smaller), but
make constants the smallest symbols. Provided for reasons of symmetry.

freq: Sort symbols by frequency (frequently occurring symbols are larger). Ar-
ity is used as a tie breaker.

invfreq: Sort symbols by frequency (frequently occurring symbols are smaller).
In our experience, this is one of the best general-purpose precedence gen-
eration schemes.

invfreqconstmin: Same as invfreq, but make constants always smaller than
everything else.

invfreqhack: As invfreqconstmin, but unary symbols with maximal frequency
become largest.

25

4.2.2 Weight Generation Schemes

Weight generation schemes are based on syntactic features of the symbol and
the input clause set, or on the predefined precedence. The following options are
available for --order-weight-generation.

firstmaximal0: Give the same arbitrary (positive) weight to all function sym-
bols except to the first maximal one encountered (order is arbitrary),
which is given weight 0.

arity: Weight of a function symbol f |n is n+ 1, i.e. its arity plus one.

aritymax0: As arity, except that the first maximal symbol is given weight 0.

modarity: Weight of a function symbol f |n is n+c, where c is a positive constant
(W TO BASEWEIGHT, which has been 4 since the dawn of time).

modaritymax0: As modarity, except that the first maximal symbol is given
weight 0.

aritysquared: Weight of a symbol f |n is n2 + 1.

aritysquaredmax0: As aritysquared, except that the first maximal symbol is
given weight 0.

invarity: Let m be the largest arity of any symbol in the signature. Weight
of a symbol f |n is m− n+ 1.

invaritymax0: As invarity, except that the first maximal symbol is given
weight 0.

invaritysquared: Let m be the largest arity of any symbol in the signature.
Weight of a symbol f |n is m2 − n2 + 1.

invaritysquaredmax0: As invaritysquared, except that the first maximal
symbol is given weight 0.

precedence: Let < be the (pre-determined) precedence on function symbols F
in the problem. Then the weight of f is given by |{g|g < f}| + 1 (the
number of symbols smaller than f in the precedence increased by one).

invprecedence: Let < be the (pre-determined) precedence on function symbols
F in the problem. Then the weight of f is given by |g|f < g| + 1 (the
number of symbols larger than f in the precedence increased by one).

freqcount: Make the weight of a symbol the number of occurrences of that
symbol in the (potentially preprocessed) input problem.

invfreqcount: Letm be the number of occurrences of the most frequent symbol
in the input problem. The weight of f ismminus he number of occurrences
of f in the input problem.

26

freqrank: Sort all function symbols by frequency of occurrence (which induces
a total quasi-ordering). The weight of a symbol is the rank of it’s equiva-
lence class, with less frequent symbols getting lower weights.

invfreqrank: Sort all function symbols by frequency of occurrence (which in-
duces a total quasi-ordering). The weight of a symbol is the rank of its
equivalence class, with less frequent symbols getting higher weights.

freqranksquare: As freqrank, but weight is the square of the rank.

invfreqranksquare: As invfreqrank, but weight is the square of the rank.

invmodfreqrank: Sort all function symbols by frequency of occurrence (which
induces a total quasi-ordering). The weight of an equivalence class is the
sum of the cardinality of all smaller classes (+1). The weight of a symbol
is the weight of its equivalence classes. Less frequent symbols get higher
weights.

invmodfreqrankmax0: As invmodfreqrank, except that the first maximal sym-
bol is given weight 0.

constant: Give the same arbitrary positive weight to all function symbols.

4.2.3 Literal Comparison

By default, literals are compared as multisets of terms, as described in [BG94].
However, E also supports other ways to identify maximal literals, both weaker
and potentially stronger.

The option --restrict-literal-comparisons makes all literals incompa-
rable, i.e. all literals are potential inference literals (unless literal selection is
activated - see 4.3. This will e.g. make the set-of-support strategy complete
for the non-equational case. It may also make some proofs easier to find. On
average, however, this can be expected to decrease performance.

The option --literal-comparison=<arg> allow the user to select alterna-
tive literal comparison schemes. In particular, literals will be first compared by
predicate symbol, and only then by full terms. This is a poor man’s version of
transfinite KBO [LW07, KMV11], applied to literals only, but also extended to
LPO. The argument can currently be:

None: This is equivalent to the older option --restrict-literal-comparisons
described above.

Normal: This is the default, with literals being compared as multi-sets of the
two terms of the (in E always) equational literal.

TFOEqMax: This compares literals by predicate symbol first, and only in the
case of a tie by the multiset comparison of the two terms. In E, literals
are always encoded as equational, but non-equational literals are marked
accordingly. For TFOEqMax, equational literals are always larger than non-
equational literals.

27

TFOEqMin: See the previous option. The only difference is that equational lit-
erals are always smaller than non-equational literals.

4.3 Literal Selection Strategies

The superposition calculus allows the selection of arbitrary negative literals
in a clause and only requires generating inferences to be performed on these
literals. E supports this feature and implements it via manipulations of the
literal ordering. Additionally, E implements strategies that allow inferences into
maximal positive literals and selected negative literals. A selection strategy is
selected with the option --literal-selection-strategy. Currently, at least
the following strategies are implemented:

NoSelection: Perform ordinary superposition without selection.

NoGeneration: Do not perform any generating inferences. This strategy is not
complete, but applying it to a formula generates a normal form that does
not contain any tautologies or redundant clauses.

SelectNegativeLiterals: Select all negative literals. For Horn clauses, this
implements the maximal literal positive unit strategy [Der91] previously
realized separately in E.

SelectPureVarNegLiterals: Select the first negative literal of the form X≃Y .

SelectLargestNegLit: Select the largest negative literal (by symbol counting,
function symbols count as 2, variables as 1).

SelectSmallestNegLit: As above, but select the smallest literal.

SelectDiffNegLit: Select the negative literal in which both terms have the
largest size difference.

SelectGroundNegLit: Select the first negative ground literal for which the size
difference between both terms is maximal.

SelectOptimalLit: If there is a ground negative literal, select as in the case of
SelectGroundNegLit, otherwise as in SelectDiffNegLit.

Each of the strategies that do actually select negative literals has a corre-
sponding counterpart starting with P that additionally allows paramodulation
into maximal positive literals3.

Example: Some problems become a lot simpler with the correct strategy. Try
e.g.

3Except for SelectOptimalLit, where the resulting strategy, PSelectOptimalLit will allow
paramodulation into positive literals only if no ground literal has been selected.

28

eprover --literal-selection-strategy=NoSelection \

GRP001-1+rm_eq_rstfp.lop

eprover --literal-selection-strategy=SelectLargestNegLit \

GRP001-1+rm_eq_rstfp.lop

You will find the file GRP001-1+rm eq rstfp.lop in the E/PROVER direc-
tory.

As we aim at replacing the vast number of individual literal selection func-
tions with a more abstract mechanism, we refrain from describing all of the cur-
rently implemented functions in detail. If you need information about the set
of implemented functions, run eprover -W none. The individual functions are
implemented and somewhat described in E/HEURISTICS/che litselection.h.

4.4 Controling Propositional Reasoning

E now integrates the CDCL SAT solver (see section 3.3.1. Support for SAT
checking is, so far, only marginally integrated into the automatic mode, but can
be controlled by the user via the following command line options.

--satcheck-proc-interval[=<arg>]

Enable periodic SAT checking at the given interval of main loop
non-trivial processed clauses.

--satcheck-gen-interval[=<arg>]

Enable periodic SAT checking whenever the total proof state
size increases by the given limit.

--satcheck-ttinsert-interval[=<arg>]

Enable periodic SAT checking whenever the number of term
tops insertions matches the given limit (which grows exponen-
tially).

--satcheck[=<arg>]

Set the grounding strategy for periodic SAT checking. Note that
to enable SAT checking, it is also necessary to set the interval
with one of the previous two options.

--satcheck-decision-limit[=<arg>]

Set the number of decisions allowed for each run of the SAT
solver. If the option is not given, the built-in value is 10000.
Use -1 to allow unlimited decision.

--satcheck-normalize-const

Use the current normal form (as recorded in the termbank
rewrite cache) of the selected constant as the term for the
grounding substitution.

--satcheck-normalize-unproc

Enable re-simplification (heuristic re-revaluation) of unpro-
cessed clauses before grounding for SAT checking.

29

4.5 The Watchlist Feature

Since public release 0.81, E supports a watchlist. A watchlist is a user-defined set
of clauses. Whenever the prover encounters4 a clause that subsumes one or more
clauses from the watchlist, those clauses are removed from it. The saturation
process terminates if the watchlist is empty (or, of course, if a saturated state
or the empty clause have been reached).

There are two uses for a watchlist: To guide the proof search (using a heuris-
tic that prefers clauses on the watchlist), or to find purely constructive proofs
for clauses on the watchlist.

If you want to guide the proof search, place clauses you believe to be im-
portant lemmata onto the watchlist. Also include the empty clause to make
sure that the prover will not terminate prematurely. You can then use a clause
selection heuristic that will give special consideration to clauses on the watch-
list. This is currently supported via the priority functions PreferWatchlist

and DeferWatchlist. A clause evaluation function using PreferWatchlist

will always select clauses which subsume watchlist clauses first. Similarly, using
DeferWatchlist can be used to put the processing of watchlist clauses off.

There is a predefined clause selection heuristic UseWatchlist (select it with
-xUseWatchlist) that will make sure that watchlist clauses are selected rela-
tively early. It is a strong general purpose heuristic, and will maintain com-
pleteness of the prover. This should allow easy access to the watchlist feature
even if you don’t yet feel comfortable with specifying your own heuristics.

To generate constructive proofs of clauses, just place them on the watch list
and select output level 4 or greater (see section 6.3). Steps affecting the watch
list will be marked in the PCL2 output file. If you use the eproof script for
proof output or run epclextract on your own, subproofs for watchlist steps will
be automatically extracted.

Note that this forward reasoning is not complete, i.e. the prover may never
generate a given watchlist clause, even if it would be trivial to prove it via
refutation.

Options controlling the use of the watch list:
--watchlist=<arg> Select a file containing the watch list

clauses. Syntax should be the same
syntax as your proof problem (E-LOP,
TPTP-1/2 or TPTP-3/TSTP). Just
write down a list of clauses and/or for-
mulas.

--no-watchlist-simplification By default, watch list clauses are sim-
plified with respect to the current set
P. Use this option to disable the fea-
ture.

4Clauses are checked against the watchlist after normalization, both when they are inserted
into U or if they are selected for processing.

30

4.6 Learning Clause Evaluation Functions

E can use a knowledge base generated by analyzing many successful proof at-
tempts to guide its search, i.e. it can learn what kinds of clauses are likely to be
useful for a proof and which ones are likely superfluous. The details of the learn-
ing mechanism can be found in [Sch00, Sch01]. Essentially, an inference protocol
is analyzed, useful and useless clauses are identified and generalized into clause
patterns, and the resulting information is stored in a knowledge base. Later,
new clauses that match a pattern are evaluated accordingly.

Creating Knowledge Bases

An E knowledge base is a directory containing a number of files, storing both
the knowledge and configuration information. Knowledge bases are generated
with the tool ekb create. If no argument is given, ekb create will create a
knowledge base called E KNOWLEDGE in the current directory.

You can run ekb create -h for more information about the configuration.
However, the defaults are usually quite sufficient.

Populating Knowledge Bases

The knowledge base contains information gained from clausal PCL2 protocols
of E. In a first step, information from the protocol is abstracted into a more
compact form. A number of clauses is selected as training examples, and anno-
tations about their role are computed. The result is a list of annotated clauses
and a list of the axioms (initial clauses) of the problem. This step can be
performed using the program direct examples5.

In a second step, the collected information is integrated into the knowledge
base. For this purpose, the program ekb insert can be used. However, it is
probably more convenient to use the single program ekb ginsert, which directly
extracts all pertinent information from a PCL2 protocol and inserts it into a
designated knowledge base.

The program ekb delete will delete an example from a knowledge base.
This process is not particularly efficient, as the whole knowledge base is first
parsed.

Using Learned Knowledge

The knowledge in a knowledge base can be utilized by the two clause evalu-
ation functions TSMWeight() and TSMRWeight(). Both compute a modifica-
tion weight based on the learned knowledge, and apply it to a conventional
symbol-counting base weight (similar to Clauseweight() for TSMWeight() and
Refinedweight() for TSMWeight(). An example command line is:

eprover -x’(1*TSMWeight(ConstPrio, 1, 1, 2, flat, E KNOWLEDGE,

100000,1.0,1.0,Flat,IndexIdentity,100000,-20,20,-2,-1,0,2))’

5The name is an historical accident and has no significance anymore

31

There are also two fully predefined learning clause selection heuristics. Se-
lect them with -xUseTSM1 (for some influence of the learned knowledge) or
-xUseTSM2 (for a lot of influence of the learned knowledge).

4.7 Other Options

TBC - run eprover --help for a short overview.

32

Chapter 5

Input Language

E supports three different input formats and two different output formats. If
no particular format is explicitly requested, E will determine the input format
based on the first tokens of the input file and also select a matching output
format.

5.1 LOP

E originally used E-LOP, a dialect of the LOP language designed for SETHEO.
At the moment, your best bet is to retrieve the LOP description from the E web
site [Sch22] and/or check out the examples available from it. LOP is very close
to Prolog, and E can usually read many fully declarative Prolog files if they do
not use arithmetic or rely on predefined symbols. Plain SETHEO files usually
also work very well. There are a couple of minor differences, however:

• equal() is an interpreted symbol for E. It normally does not carry any
meaning for SETHEO (unless equality axioms are added).

• SETHEO allows the same identifier to be used as a constant, a non-
constant function symbol and a predicate symbol. E encodes all of these
as ordinary function symbols, and hence will complain if a symbol is used
inconsistently.

• E allows the use of = as an infix symbol for equality. a=b is equivalent to
equal(a,b) for E.

• E does not support constraints or SETHEO built-in symbols. This should
not usually affect pure theorem proving tasks.

• E normally treats procedural clauses exactly as it treats declarative clauses.
Query clauses (clauses with an empty head and starting with ?-, e.g.
?-∼p(X), q(X). can optionally be used to define the a set of goal clauses

33

(by default, all negative clauses are considered to be goals). At the mo-
ment, this information is only used for the initial set of support (with
--sos-uses-input-types). Note that you can still specify arbitrary
clauses as query clauses, since LOP supports negated literals.

5.2 TPTP-2 and TPTP-3 Formats

The TPTP [Sut09] is a library of problems for automated theorem prover. Prob-
lems in the TPTP are written in TPTP syntax. There are two major versions
of the TPTP syntax, both of which are supported by E.

Version 21 of the TPTP syntax was used up for TPTP releases previous to
TPTP 3.0.0. The current version 3 of the TPTP syntax, described in [SSCG06],
covers both input problems and both proof and model output using one consis-
tent formalism. It has been used as the native format for TPTP releases since
TPTP 3.0.0.

Parsing in TPTP format version 2 is enabled by the options --tptp-in,
tptp2-in, --tptp-format and --tptp2-format. The last two options also se-
lect TPTP 2 format for the output of normal clauses during and after saturation.
Proof output will be in PCL2 format, however.

TPTP syntax version 3 [SSCG06, SSCB12] is the currently recommended for-
mat. It is supported by many provers, it is more consistent than the old TPTP
language, and it adds a number of useful features. E supports TPTP-3 syntax
with the options --tstp-in , tptp3-in, --tstp-format and --tptp3-format.
The last two options will also enable TPTP-3 format for proof output. Note
that many of E’s support tools still require PCL2 format. Various tools for
processing TPTP-3 proof format are available via the TPTP web-site, http:
//www.tptp.org.

In either TPTP format, clauses and formulas with TPTP type conjecture,
negated conjecture, or question (the last two in TPTP-3 only) are considered
goal clauses for the --sos-uses-input-types option.

5.3 Higher-order extension

As part of the Matryoshka project (http://matryoshka.gforge.inria.fr/) E
has been extended to optionally support lambda-free higher-order logic (LFHOL)
and full monomorphic higher-order logic. The option can be enabled at compile
time by passing --enable-ho to the configure script.

In this section we give a very short introduction to (LF)HOL syntax and se-
mantics. Detailed description (which includes semantics) can be found in a pa-
per by Bentkamp, Blanchette, Cruanes, and Waldmann [BBCW18], available at
http://matryoshka.gforge.inria.fr/pubs/lfhosup_report.pdf. The im-
plementation is described in [VBCS19, VBCS18].

1Version 1 allowed the specification of problems in clause normal form only. Version 2 is a
conservative extension of version 1 and adds support for full first order formulas.

34

LFHOL extends FOL by allowing partial appliciation of function symbols as
well as application of variables to other terms. Unlike other HOLs, there is no
comprehension principle, and boolean formulae can only appear as atoms (not
as arguments to other symbols). Quantification over booleans is not allowed.
LFHOL is simply typed – each type is either atomic or a function type.

For E 2.3 and up, LFHOL formulas are expressed using a subset of TPTP
THF syntax. From E 3.0, the prover supports full (monomorphic) higher-order
logic. More precisely, E can parse and process a subset of THF syntax that is
monomorphic, without the constants !! and ??, and without anything else that
will give you an error message. ;-)

As an example, LFHOL is expressive enough to reason about higher-order
combinators such as map (pointwise application of a function to a list) or power
(iterative application of a function).

The example problem list.p in the directory EXAMPLE PROBLEMS/LFHOL

shows how LFHOL features can be used to succintly express problems that
have more verbose encodings in FOL.

To get a feeling for what is provable in LFHOL, consider the following ex-
ample:

∃h.∀x y. h x y = f y x

In most HOLs, this formula is provable, and the witness is the function
λx y. f y x. In LFHOL, the function cannot be synthesized, so the proof can
only be concluded if such a function is explicitly described in the axiomatization.
This proof problem is also provdied in EXAMPLE PROBLEMS/LFHOL, both with and
without the axiom providing the permuting function.

35

Chapter 6

Output. . . or how to
interpret what you see

E has several different output levels, controlled by the option -l or --output-level.
Level 0 prints nearly no output except for the result. Level 1 is intended to give
humans a somewhat readable impression of what is going on inside the infer-
ence engine. Levels 3 to 6 output increasingly more information about the inside
processes in PCL2 format. At level 4 and above, a (large) superset of the proof
inferences is printed. You can use the epclextract utility in E/PROVER/ to
extract a simple proof object.

In Level 0 and 1, everything E prints is either a clause that is implied by the
original axioms, or a comment (or, very often, both).

6.1 The Bare Essentials

In silent mode (--output-level=0, -s or --silent), E will not print any output
during saturation. It will print a one-line comment documenting the state of
the proof search after termination. The following possibilities exist:

• The prover found a proof. This is denoted by the output string

Proof found!

• The problem does not have a proof, i.e. the specification is satisfiable (and
E can detect this):

No proof found!

Ensuring the completeness of a prover is much harder than ensuring cor-
rectness. Moreover, proofs can easily be checked by analyzing the output
of the prover, while such a check for the absence of proofs is rarely possible.

36

I do believe that the current version of E is both correct and complete1

but my belief in the former is stronger than my belief in the latter.

• A (hard) resource limit was hit. For memory this can be either due to a
per process limit (set with limit or the prover option --memory-limit),
or due to running out of virtual memory. For CPU time, this case is
triggered if the per process CPU time limit is reached and signalled to the
prover via a SIGXCPU signal. This limit can be set with limit or, more
reliable, with the option --cpu-limit. The output string is one of the
following two, depending on the exact reason for termination:

Failure: Resource limit exceeded (memory)

Failure: Resource limit exceeded (time)

• A user-defined limit was reached during saturation, and the saturation pro-
cess was stopped gracefully. Limits include number of processed clauses,
number of total clauses, and CPU time (as set with --soft-cpu-limit).
The output string is

Failure: User resource limit exceeded!

. . . and the user is expected to know which limit he selected.

• By default, E is complete, i.e. it will only terminate if either the empty
clause is found or all clauses have been processed (in which case the pro-
cessed clause set is satisfiable). However, if the option --delete-bad-limit
is given or if automatic mode in connection with a memory limit is used, E
will periodically delete clauses it deems unlikely to be processed to avoid
running out of memory. In this case, completeness cannot be ensured any
more. This effect manifests itself extremely rarely. If it does, E will print
the following string:

Failure: Out of unprocessed clauses!

This is roughly equivalent to Otter’s SOS empty message.

• Finally, it is possible to chose restricted calculi when starting E. This is
useful if E is used as a normalization tool or as a preprocessor or lemma
generator. In this case, E will print a corresponding message:

Clause set closed under restricted calculus!

1Unless the prover runs out of memory (see below), the user selects an unfair strategy (in
which case the prover may never terminate), or some strange and unexpected things happen.

37

6.2 Observing Saturation

If you run E without selecting an output level (or by setting it explicitly to
1), E will print each non-tautological, non-subsumed clause it processes as a
comment. It will also print a hash (’#’) for each clause it tries to process but
can prove to be superfluous.

This mode gives some indication of progress, and as the output is fairly
restricted, does not slow the prover down too much.

For any output level greater than 0, E will also print statistical information
about the proof search and final clause sets. The data should be fairly self-
explaining.

6.3 Inference Protocols

THIS FEATURE IS DEPREACIATED. SEE NEXT SECTION. At output lev-
els greater that 1, E prints certain inferences in PCL2 format2 or TPTP-3 output
format. At level 2, it only prints generating inferences. At level 4, it prints all
generating and modifying inferences, and at level 6 it also prints PCL/TPTP-3
steps that don’t correspond to inferences, but give some insight into the inter-
nal operation of the inference engine. This protocol is fairly readable and, from
level 4 on can be used to check the proof with the utility checkproof provided
with the distribution.

Note that this feature has been replaced by the dynamic construction of
proof objects, and is no longer actively maintained. As a result, strange things
may happen, and newer inferences may not be supported at all. It’s not (yet)
been removed because some people still find it useful for debugging.

6.4 Proofs Objects

E 1.9 and later can internally record all necessary information for proof out-
put. It makes use of the DISCOUNT loop property that only processed clauses
(usually a small subset of all clauses in the search state) can ever participate in
generating inferences or be used to simplify other clauses. For each clause, the
system stores its origin (usually a generating inference and the parents), and a
history of simplifications (inference rule and side premises). Only if a processed
clause can be backward-simplified by a new clause, the original is archived and
replaced by a simplified copy in the search state (which points to the original
as its parent).

When the empty clause has been derived and hence a proof concluded, the
proof tree is extracted by tracing the dependencies. Steps are topologically
sorted, ensuring that all dependencies of a step are listed before it. The lin-
earised proof can then be printed, either in TPTP-3 syntax, or in PCL2 syntax.
The syntax is identical to the detailed proof output described in the previous

2PCL2 is a proof output designed as a successor to PCL [DS94a, DS94b, DS96].

38

Specification
fof(greeks, axiom, (philosopher(socrates)|philosopher(plato))).

fof(scot, axiom, (philosopher(hume))).

fof(phils_wise, axiom, (![X]:(philosopher(X) => wise(X)))).

fof(is_there_wisdom, question, (?[X]:wise(X))).

Answers (eprover -s --answers)
SZS status Theorem

SZS answers Tuple [[hume]|_]

SZS answers Tuple [([socrates]|[plato])|_]

Proof found!

Figure 6.1: Answer generation

section, and proof objects can typically be processed with the same tools as full
inference protocols.

Proof-object generation and output are activated by --proof-object.

6.5 Answers

E supports the proposed TPTP standard for answers [SSSU]. An answer is
an instantiation for an existential conjecture (or query) that makes the conjec-
ture true. In practice, E will supply bindings for the outermost existentially
quantified variables in a TPTP formula with type question.

The implementation is straightforward. The query is extended by adding
the atomic formula ~$answer(new_fun(<varlist>)), where <varlist> is the
list of outermost existentially quantified variables. This atom is carried through
clausification and ends up as a positive literal in the CNF. The literal ordering
is automatically chosen so that the answer literal never participates in infer-
ences. Semantically, the $answer predicate always evaluates to false. It is only
evaluated in clauses where all literals are answer literals. Answers are extracted
and printed in tuple form at the time of the evaluation. Figure 6.1 shows an
example.

The system correctly handles disjunctive answers (at least one of socrates
or plato is a philosopher and hence wise, but the theory does not allow us
to decide who is). While the example has been kept intentionally simple, the
system also supports complex terms and variables as parts of answers, in that
case representing the set of all instances.

The --answers=<x> option controls the number of answers generated. By
default, the prover terminates after the first successful proof, and thus only
provides one answer. Using the option without an argument will make the
prover search for LONG MAX answers, i.e. a practically unlimited number. Using
a positive integer argument limits the number of answers to the limit given.

The option --conjectures-are-questions will make the prover treat any
formula of type conjecture as a question, not just formulas with explicit type
question.

39

6.6 Requesting Specific Output

There are two additional kinds of information E can provide beyond the normal
output during proof search: Statistical information and final clause sets (with
additional information).

First, E can give you some technical information about the conditions it runs
under.

The option --print-pid will make E print its process id as a comment, in
the format # Pid: XXX, where XXX is an integer number. This is useful if you
want to send signals to the prover (in particular, if you want to terminate the
prover) to control it from the outside.

The option -R (--resources-info) will make E print a summary of used
system resources after graceful termination:

User time : 0.010 s

System time : 0.020 s

Total time : 0.030 s

Maximum resident set size: 0 pages

Most operating systems do not provide a valid value for the resident set size
and other memory-related resources, so you should probably not depend on the
last value to carry any meaningful information. The time information is required
by most standards and should be useful for all tested operating systems.

E can be used not only as a prover, but as a normalizer for formulae or as
a lemma generator. In these cases, you will not only want to know if E found a
proof, but also need some or all of the derived clauses, possibly with statistical
information for filtering. This is supported with the --print-saturated and
--print-sat-info options for E.

The option --print-saturated takes as its argument a string of letters,
each of which represents a part of the total set of clauses E knows about. The
following table contains the meaning of the individual letters:

40

e Processed positive unit clauses (Equations).
i Processed negative unit clauses (Inequations).
g Processed non-unit clauses (except for the empty clause,

which, if present, is printed separately). The above three
sets are interreduced and all selected inferences between
them have been computed.

E Unprocessed positive unit clauses.
I Unprocessed negative unit clauses.
G Unprocessed non-unit clause (this set may contain the

empty clause in very rare cases).
a Print equality axioms (if equality is present in the prob-

lem). This letter prints axioms for reflexivity, symmetry,
and transitivity, and a set of substitutivity axioms, one for
each argument position of every function symbol and pred-
icate symbol.

A As a, but print a single substitutivity axiom covering all
positions for each symbol.

The short form, -S, is equivalent to --print-saturated=eigEIG. If the op-
tion --print-sat-info is set, then each of the clauses is followed by a comment
of the form # info(id, pd, pl, sc, cd, nl, no, nv). The following table
explains the meaning of these values:

id Clause ident (probably only useful internally)
pd Depth of the derivation graph for this clause
pl Number of nodes in the derivation grap
sc Symbol count (function symbols and variables)
cd Depth of the deepest term in the clause
nl Number of literals in the clause
no Number of variable occurences
nv Number of different variables

41

Chapter 7

Additional utilities

The E distribution contains a number of programs beyond the main prover.
The following sections contains a short description of the programs that are
reasonably stable. All of the utilities support the option --help to print a
description of the operation and all supported options.

7.1 Common options

All major programs in the E distribution share some common options. Some
more options are shared to the degree that they are applicable. The most
important of these shared options are listed in Table 7.1.

7.2 Grounding: eground

The Bernays-Schönfinkel class is a decidable fragment of first-order logic. Prob-
lems from this class can be clausified into clause normal form without non-
constant function symbols. This clausal class is effectively propositional (EPR),
since the Herbrand universe is finite. The program eground takes a problem
from the Bernays-Schönfinkel class, or an EPR clause normal form problem,
and tries to convert it into an equisatisfiable propositional problem. It does
so by clausification and instantiation of the the clausal problem. The result-
ing propositional problem can than be handed to a propositional reasoner (e.g.
Chaff [MMZ+01] or MiniSAT [ES03]). One pre-packaged system build on this
principles is GrAnDe [SS02].

Eground uses a number of techniques to reduce the number of instances
generated. The technical background is described in [Sch02a]. The program
can generate output in LOP, TPTP-2 and TPTP-3 format, but also directly in
the DIMACS format used by many propositional reasoners.

A typical command line for starting eground is:

eground --tptp3-in --dimacs --split-tries=1

42

-h

--help

Print the help page for the program. This usually includes documen-
tation for all options supported by the program.

-V

--version

Print the version number of the program. If you encounter bugs,
please check if updating to the latest version solves your problem.
Also, always include the output of this with all bug reports.

-v

--verbose[=level]

Make the program more verbose. Verbose output is written to
stterr, not the standard output, and will cover technical aspects.
Most programs support verbosity levels 0 (the default), 1, and 2,
with -v selecting level 1.

-s

--silent

Reduce output of the tool to a minimal.
-o<outfile>

--output-file=<outfile>

By default, most of the programs in the E distribution provide output
to stdout, i.e. usually to the controlling terminal. This option allows
the user to specify an output file.

--tptp2-in

--tptp2-out

--tptp2-format

--tptp3-in

--tptp3-out

--tptp3-format

Select TPTP formats for input and/or output. If you do not start
with an existing corpus, the recommended format is TPTP-3 syntax.

Figure 7.1: Common program options

43

--constraints <infile> -o <outfile>

7.3 Rewriting: enormalizer

The program enormalizer uses E’s shared terms, cached rewriting, and index-
ing to implement an efficient normalizer. It reads a set of rewrite rules and
computes the normal forms of a set of terms, clauses and formulas with respect
to that set of rewrite rules.

The rule set can be specified as a set of positive unit clauses and/or formulas
that clausify into unit clauses. Literals are taken as rewrite rules with the
orientation they are specified in the input. In particular, no term ordering is
applied, and neither termination nor confluence are ensured or verified. The
rewrite rules are applied exhaustively, but in an unspecified order. Subterms
are normalized in strict leftmost/innermost manner. In particular, all subterms
are normalized before a superterm is rewritten.

Supported formats are LOP, TPTP-2 and TPTP-3.
A typical command line for starting enormalizer is:

enormalizer --tptp3-in <rulefile> -t<termfile>

7.4 Multiple queries: e ltb runner

E is designed to handle individual proof problems, one at a time. The prover has
mechanism to handle even large specifications. However, in cases where multi-
ple queries or conjectures are posed against a large background theory, even the
parsing of the background theory may take up significant time. E ltb runner

has been developed to efficiently handle this situation. It can read the back-
ground theory once, and then run E with additional axioms and different con-
jectures against this background theory without re-parsing of the full theory.

The program was originally designed for running sets of queries against large
theories in batch mode, but now also supports interactive queries. However,
e ltb runner is in a more prototypical state than most of the E distribution.
In particular, any syntax error in the input will cause the whole program to
terminate.

By default, e ltb runner will process a batch specification file (see 7.4.2),
which contains a specification of the background theory, some options, and
(optionally) a number of individual job requests. If used with the option
--interactive, it will enter interactive mode (7.4.3) after all batch jobs have
been processed.

For every job, the program will use several different goal-directed pruning
strategies to extract likely useful axioms from the background theory. For each
of the pruned axiomatizations, e ltb runner will run E in automatic mode. If
one of the strategies succeeds, all running strategies will be terminated and the
result returned.

44

The program will run up to 8 strategies in parallel. Thus, it is best used on
a multi-core machine with sufficient amounts of memory.

7.4.1 Usage

E ltb runner relies on TPTP-3 include file syntax and semantics, and hence
will only (and implicitly) work with the TPTP-3 syntax. The main program
runs several instances of eprover as sub-processes. Unless that executable is in
the search path, the full path should be given as as the optional second argument
to the program.

A typical command line for starting e ltb runner is:

e_ltb_runner <batchspec> [--output-dir=<dir>] [path_to_eprover]

For interactive use, add the option --interactive, for multi-format support
(see below) add --variant27.

7.4.2 Batch specification file

The batch specification file format is defined for the CADE ATP System Com-
petition LTB division, and is typically updated every year. E tracks this devel-
opment. The E 1.9 distribution implements support for the LTB format used
in CASC-24/CASC-25 and documented at http://www.cs.miami.edu/~tptp/
CASC/24/Design.html#Problems, subsection Batch Specification Files. It tries
to maintain backwards-compatibility to for the LTB format used in CASC-
J6 and documented at http://www.cs.miami.edu/~tptp/CASC/J6/Design.

html#Problems. Later versions support later formats. In particular, E 2.4 adds
support for the multi-format competition used in CASC-27 and described at
http://www.tptp.org/CASC/27/Design.html with the option --variants27.

A batch specification file consists of a number of defined comments, inter-
leaved with parameter settings and include statements for the axiom files of the
background theory. This is followed by an optional list of job specifiers, where
each job specifier consists of a pair of file names, with the first specified file
containing the conjecture and possible additional hypotheses, while the second
file name describes where the output of the proof attempt should be stored.

Figure 7.2 shows an example of an LTB batch specification file. E ltb runner

ignores all comment lines in the batch specification file. The non-comment-lines
are described below.

• division.category division mnemonic.category mnemonic

This line is expected and parsed, but has no effect.

• execution.order ordered |unordered

This line specifies if batch problems must be processed in order or can
be reordered. E ltb runner parses the line, but always tries to solve the
problems in the order provided.

45

% SZS start BatchConfiguration

division.category LTB.SMO

execution.order ordered

output.required Assurance

output.desired Proof Answer

limit.time.problem.wc 60

% SZS end BatchConfiguration

% SZS start BatchIncludes

include(’Axioms/CSR003+2.ax’).

include(’Axioms/CSR003+5.ax’).

% SZS end BatchIncludes

% SZS start BatchProblems

/Users/schulz/EPROVER/TPTP_5.4.0_FLAT/CSR083+3.p /Users/schulz/tmp/CSR083+3

/Users/schulz/EPROVER/TPTP_5.4.0_FLAT/CSR075+3.p /Users/schulz/tmp/CSR075+3

/Users/schulz/EPROVER/TPTP_5.4.0_FLAT/CSR082+3.p /Users/schulz/tmp/CSR082+3

/Users/schulz/EPROVER/TPTP_5.4.0_FLAT/CSR086+3.p /Users/schulz/tmp/CSR086+3

/Users/schulz/EPROVER/TPTP_5.4.0_FLAT/CSR091+3.p /Users/schulz/tmp/CSR091+3

/Users/schulz/EPROVER/TPTP_5.4.0_FLAT/CSR092+3.p /Users/schulz/tmp/CSR092+3

% SZS end BatchProblems

Figure 7.2: Example LTB batch specification file

• output.required space separated list

This specifies what output is required from the system. Available values
are

– Assurance: A plain statement about existence of proof or counter-
model is sufficient.

– Proof: An explicit proof will be provided.

– ListOfFOF: An (implicitly small) subset of axioms sufficient for a
proof should be provided. E ltb runner fulfills this by giving a full
proof as for the previous option.

– Model: If the problem is disproved, e ltb runner will provide a sat-
urated clause set as evidence.

– Answer: If conjectures contain existentially quantified variables, a
suitable instantiation will be given.

• output.desired space separated list

This specifies what output is required from the system. Available values
are as for the previous option. E ltb runner treats this exactly as the
required output.

• limit.time.problem.wc limit in seconds The wall clock time limit al-
lowed per problem. If this is zero, no per-problem limit exists.

• The specification of the background theory, in the form of a list of TPTP
include statement. Note that the file names will be interpreted as always:
An absolute file name is an absolute file name. A relative file name is

46

relative to the current working directory, or, of the file is not found, relative
to the value of the TPTP environment variable (if set).

• The list of individual batch jobs, in the form of pairs of absolute problem
file names, with the first giving the problem specification, the second the
location for the result for the problem. In the setup for interactive queries,
this will typically be empty.

7.4.3 Interactive queries

If e ltb runner is called with the option --interactive, it will not terminate
after processing the batch jobs, but will wait for user requests entered via stan-
dard input, i.e. usually via the terminal. All requests need to be terminated
with go. on a line of its own. The following three user requests are supported:

• help: Prints a short help text.

• quit: Terminates the program in a controlled manner.

• The last option specifies a theorem proving job. It optionally starts with a
job name specifier of the form job <ident>. and then specified a problem
in TPTP-3 CNF/FOF syntax (optionally using include statements). After
the concluding go., the specification will be parsed, combined with the
background theory, and passed to the proving engine.

Figure 7.3 shows an slightly shortened example of an interactive session with
e ltb runner.

7.5 Specification pruning: e axfilter

One of the problems of automated deduction is the handling of large specifi-
cations that contain a lot of axioms that are not relevant for the conjectures
at hand. The irrelevant facts contribute to the size and growths of the search
space, and hence make proof search much more difficult.

E provides a mechanism to apply (pruning) filters to specifications. The aim
of these filters is to select subsets of the clauses and formulas in the problem set
that are likely sufficient for proving a conjecture, but which are much smaller
than the full axiomatization.

This functionality is also available as the stand-alone tool e axfilter. This
tool accepts a specification and a list of named filters, and generates one output
file for each filter, containing the parts of the specification that result from
applying the corresponding filter to the original specification.

A typical command line for running e axfilter is:

e_axfilter --tptp3-format --filter=<filterfile> <infile>

47

> e_ltb_runner ../etc/LTBSampleInputI.txt --interactive

Parsing Axioms/CSR003+2.ax

Parsing Axioms/CSR003+5.ax

== WCT: 1s, Solved: 0/ 0 ==

Enter job, ’help’ or ’quit’, followed by ’go.’ on a line of its own:

help

go.

Enter a job, ’help’ or ’quit’. Finish any action with ’go.’ on a line

of its own. A job consists of an optional job name specifier of the

form ’job <ident>.’, followed by a specification of a first-order

problem in TPTP-3 syntax (including any combination of ’cnf’, ’fof’ and

’include’ statements. The system then tries to solve the specified

problem (including the constant background theory) and prints the

results of this attempt.

Enter job, ’help’ or ’quit’, followed by ’go.’ on a line of its own:

job test_job.

include(’CSR083+3.p’).

go.

Processing started for test_job

Filtering for Threshold(10000) (606)

Filtering for GSinE(CountFormulas, hypos, 6.000000, ...

Filtering for GSinE(CountFormulas, hypos, 1.200000, ...

[...]

Filtering for GSinE(CountFormulas, nohypos, 6.000000, ...

No proof found by Threshold(10000)

SZS status Theorem for test_job

Solution found by GSinE(CountFormulas, nohypos, 1.200000, ...

Pid: 69178

Preprocessing time : 0.012 s

SZS status Theorem

SZS answers Tuple [[s__Human]|_]

Proof found!

User time : 0.009 s

System time : 0.005 s

Total time : 0.013 s

Maximum resident set size: 2457600 pages

Proof reconstruction starting

SZS output start CNFRefutation.

[...]

SZS output end CNFRefutation

Proof reconstruction done

Processing finished for test_job

Enter job, ’help’ or ’quit’, followed by ’go.’ on a line of its own:

Figure 7.3: Example of an interactivee ltb runner session (slightly shortened)

48

The output files are named by taking the input file (without the suffix),
appending the filter name, and the suffix .p.

If no filter definition is given, the program uses the built-in default, which
consists of a set of reasonably orthogonal filters.

7.5.1 Filter algorithms

E currently implements two types of filters. The major filter type is a con-
figurable variant of Kryštoff Hoder’s SInE algorithm [HV11] for pruning large
specification. The basic idea of this filter is to rate function- and predicate sym-
bols by their rarity - the less often a symbol occurs in the specification, the more
important any given formula or clause that handles the symbol is for the defini-
tion of that symbol. The algorithm starts by computing the D-relation between
clauses/formulas and symbols. A clause/formula is in the D-relation with the
rarest symbols that occur in it. The exact details of ”rarest” are configurable
in a number of ways - see below.

The selection algorithm starts with the conjectures (all clauses/formulas of
TPTP type conjecture, and marks all symbols in them as active. It then
proceeds to add all clauses/formulas that are in the D-relation with an active
symbol. All other symbols in those new clauses are made active as well, and the
process repeats until a fix point is reached or one of several other termination
conditions is reached.

The second kind of filter is a simple threshold filter. It will pass all clauses
and formulas of a specification that are below a certain threshold size, and
no clauses or formulas that are above this threshold. The main purpose of
this filter is to allow small specifications to pass through the filter mechanism
unchanged. This is in particular useful for an ensemble approach, where the
problem is tackled using a variety of filters. Such an approach is implemented
by e ltb runner.

7.5.2 Filter specification

The specification of a single filter follows the syntax show in Figure 7.4. For all
optional names and values, reasonable defaults are provided automatically.

The parameters have the following type and meaning:

• The first parameter defines how function and predicate symbols are counted
to determine relative rarity. For CountFormulas, the measure is the num-
ber of formulas or clauses in which the symbol occurs. For CountTerms,
the total number of occurrences is used, with multiple occurrences in a
formula being counted multiple times.

• The second parameter determines if only formulas and clauses of the type
conjecture and negated conjecture are used as the initial seed for the
SInE algorithm, or if clauses and formulas of type hypothesis are auto-
matically added to the core for the first iteration.

49

<axfilterdef> ::= [<name> ’=’] <sine-filter> | <threshold-filter>

<sine-filter> ::= GSinE ’(’ CountTerms|CountFormulas ’,’

[hypos|nohypos] ’,’

[<benvolvence>] ’,’

[<generosity>] ’,’

[<rec-depth>] ’,’

[<set-size>] ’,’

[<set-fraction>]

[’,’ addnosymb|ignorenosymb] ’)’

<threshold-filter> ::= Theshold ’(’ <threshold> ’)’

Figure 7.4: Specification filter specification syntax

• The benevolence determines the threshold used for determining the rarest
symbols in a clause or formula. It is a floating point value. All symbols
with a frequency count less than the benevolence value times the count of
the least frequent symbol in a clause are considered for the D-relation.

• The generosity also determines how many symbols are used for the D-
relation. It defines an upper bound on the number of symbols used.

• The rec-depth determines how many levels of clause/formula selection
are performed before the selection is stopped.

• The set-size adds another early termination criterion. It stops the al-
gorithm as soon as this number of axioms have been selected.

• The set-fraction has the same purpose, but specifies the limit as a
fraction of the cardinality of the input set.

• Finally, the optional last argument determines if clauses or formulas which
do not contain any function- or predicate symbols pass the filter. E does
not consider equality as a (normal) symbol, so clauses or formulas that only
contain variables will never be selected by the standard SInE algorithm.
This parameter adds them explicitly. This is a rare occurence, so the effect
is minor in either case.

50

Appendix A

Acknowledgements

Many people have helped shape E with discussions and requests. They are
to numerous to be listed here, but outstanding contributors include Robert
Nieuwenhuis (who introduced me to literal selection), Geoff Sutcliffe (who al-
ways pushes for one more feature - or ten), Andrei Voronkov (for playing the
game of The Tortoise and the Hare – in both roles), and Josef Urban, who is a
profligate user, proselytizer and occasional hacker.

In addition to this moral support, Martin Möhrmann has done some cleanup
and optimization of the code, Simon Cruanes has implemented the extension
to many-sorted logic, and Petar Vukmirovic has added support for higher order
logic and other improvements.

Nik Sultana has overhauled the manual, fixing many of my errors and thus
making space for new ones.

51

Appendix B

License

The standard distribution of E is free software. You can use, modify and copy it
under the terms of the GNU General Public License (version 2.0 or later) or the
GNU Lesser General Public License (version 2.1 or later). You may also have
bought a proprietary version of E from Safelogic A.B. in Gothenburg, Sweden.
In this case, you are bound by whatever license you agreed to. Also, your version
of E is severely outdated, and you should probably update to the current free
version. If you are in doubt about which version of E you have, run eprover

-V or eprover -h.
See the file COPYING in the main directory for the full text of the licenses.

52

Bibliography

[Bac98] L. Bachmair. Personal communication at CADE-15, Lindau. Un-
published, 1998.

[BBCW18] Alexander Bentkamp, Jasmin Christian Blanchette, Simon Cruanes,
and Uwe Waldmann. Superposition for lambda-free higher-order
logic. In Didier Galmiche, Stephan Schulz, and Roberto Sebastiani,
editors, Proc. of the 9th IJCAR, Oxford, volume 10900 of LNAI,
pages 28–46. Springer, 2018.

[BDP89] L. Bachmair, N. Dershowitz, and D.A. Plaisted. Completion With-
out Failure. In H. Ait-Kaci and M. Nivat, editors, Resolution of
Equations in Algebraic Structures, volume 2, pages 1–30. Academic
Press, 1989.

[BG94] Leo Bachmair and Harald Ganzinger. Rewrite-Based Equational
Theorem Proving with Selection and Simplification. Journal of Logic
and Computation, 3(4):217–247, 1994.

[Bie08] Armin Biere. PicoSAT essentials. Journal on Satisfiability, Boolean
Modeling and Computation, 4:75–97, 2008.

[CL73] C. Chang and R.C. Lee. Symbolic Logic and Mechanical Theorem
Proving. Computer Science and Applied Mathematics. Academic
Press, 1973.

[Der91] N. Dershowitz. Ordering-Based Strategies for Horn Clauses. In
J. Mylopoulos, editor, Proc. of the 12th IJCAI, Sydney, volume 1,
pages 118–124. Morgan Kaufmann, 1991.

[DKS97] J. Denzinger, M. Kronenburg, and S. Schulz. DISCOUNT: A Dis-
tributed and Learning Equational Prover. Journal of Automated
Reasoning, 18(2):189–198, 1997. Special Issue on the CADE 13 ATP
System Competition.

[DS94a] Jörg Denzinger and Stephan Schulz. Analysis and Representation
of Equational Proofs Generated by a Distributed Completion Based
Proof System. Seki-Report SR-94-05, Universität Kaiserslautern,
1994.

53

[DS94b] Jörg Denzinger and Stephan Schulz. Recording, Analyzing and Pre-
senting Distributed Deduction Processes. In H. Hong, editor, Proc.
1st PASCO, Hagenberg/Linz, volume 5 of Lecture Notes Series in
Computing, pages 114–123, Singapore, 1994. World Scientific Pub-
lishing.

[DS96] Jörg Denzinger and Stephan Schulz. Recording and Analysing
Knowledge-Based Distributed Deduction Processes. Journal of Sym-
bolic Computation, 21(4/5):523–541, 1996.

[ES03] Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In En-
rico Giunchiglia and Armando Tacchella, editors, Proc. of the Sixth
International Conference on Theory and Applications of Satisfiabil-
ity Testing, volume 2919 of LNCS, pages 502–518. Springer, 2003.

[HBF96] Th. Hillenbrand, A. Buch, and R. Fettig. On Gaining Efficiency
in Completion-Based Theorem Proving. In H. Ganzinger, editor,
Proc. of the 7th RTA, New Brunswick, volume 1103 of LNCS, pages
432–435. Springer, 1996.

[HJL99] Th. Hillenbrand, A. Jaeger, and B. Löchner. System Abstract:
Waldmeister – Improvements in Performance and Ease of Use. In
H. Ganzinger, editor, Proc. of the 16th CADE, Trento, volume 1632
of LNAI, pages 232–236. Springer, 1999.

[HV11] Kryštof Hoder and Andrei Voronkov. Sine Qua Non for Large
Theory Reasoning. In Nikolaj Bjørner and Viorica Sofronie-
Stokkermans, editors, Proc. of the 23rd CADE, Wroclav, Poland,
volume 6803 of LNAI, pages 299–314. Springer, 2011.

[KMV11] Laura Kovács, Georg Moser, and Andrei Voronkov. On Transfi-
nite Knuth-Bendix Orders. In Nikolaj Bjørner and Viorica Sofronie-
Stokkermans, editors, Proc. of the 23rd CADE, Wroclav, Poland,
volume 6803 of LNAI, pages 384–399. Springer, 2011.

[KV13] Laura Kovács and Andrei Voronkov. First-order theorem proving
and Vampire. In Natasha Sharygina and Helmut Veith, editors,
Proc. of the 25th CAV, volume 8044 of LNCS, pages 1–35. Springer,
2013.

[LW07] Michel Ludwig and Uwe Waldmann. An Extension of the Knuth-
Bendix Ordering with LPO-Like Properties. In Nachum Dershowitz
and Andei Voronkov, editors, Proc. of the 14th LPAR, Yerevan,
Armenia, volume 4790 of LNCS, pages 348—-362. Springer, 2007.

[McC94] W.W. McCune. Otter 3.0 Reference Manual and Guide. Technical
Report ANL-94/6, Argonne National Laboratory, 1994.

54

[MIL+97] M. Moser, O. Ibens, R. Letz, J. Steinbach, C. Goller, J. Schumann,
and K. Mayr. SETHEO and E-SETHEO – The CADE-13 Systems.
Journal of Automated Reasoning, 18(2):237–246, 1997. Special Issue
on the CADE 13 ATP System Competition.

[MMZ+01] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff:
Engineering an Efficient SAT Solver. In D. Blaauw and L. Lavagno,
editors, Proc. of the 38th Design Automation Conference, Las Vegas,
pages 530–535, 2001.

[MW97] W.W. McCune and L. Wos. Otter: The CADE-13 Competition
Incarnations. Journal of Automated Reasoning, 18(2):211–220, 1997.
Special Issue on the CADE 13 ATP System Competition.

[NN93] P. Nivela and R. Nieuwenhuis. Saturation of First-Order (Con-
strained) Clauses with the Saturate System. In C. Kirchner, edi-
tor, Proc. of the 5th RTA, Montreal, volume 690 of LNCS, pages
436–440. Springer, 1993.

[NW01] A. Nonnengart and C. Weidenbach. Computing Small Clause Nor-
mal Forms. In A. Robinson and A. Voronkov, editors, Handbook of
Automated Reasoning, volume I, chapter 5, pages 335–367. Elsevier
Science and MIT Press, 2001.

[RV01] A. Riazanov and A. Voronkov. Vampire 1.1 (System Description). In
R. Goré, A. Leitsch, and T. Nipkow, editors, Proc. of the 1st IJCAR,
Siena, volume 2083 of LNAI, pages 376–380. Springer, 2001.

[RV02] Alexandre Riazanov and Andrei Voronkov. The Design and
Implementation of VAMPIRE. Journal of AI Communications,
15(2/3):91–110, 2002.

[Sch00] S. Schulz. Learning Search Control Knowledge for Equational De-
duction. Number 230 in DISKI. Akademische Verlagsgesellschaft
Aka GmbH Berlin, 2000. Ph.D. Thesis, Fakultät für Informatik,
Technische Universität München.

[Sch01] Stephan Schulz. Learning Search Control Knowledge for Equational
Theorem Proving. In F. Baader, G. Brewka, and T. Eiter, editors,
Proc. of the Joint German/Austrian Conference on Artificial Intel-
ligence (KI-2001), volume 2174 of LNAI, pages 320–334. Springer,
2001.

[Sch02a] S. Schulz. A Comparison of Different Techniques for Grounding
Near-Propositional CNF Formulae. In S. Haller and G. Simmons,
editors, Proc. of the 15th FLAIRS, Pensacola, pages 72–76. AAAI
Press, 2002.

[Sch02b] Stephan Schulz. E – A Brainiac Theorem Prover. Journal of AI
Communications, 15(2/3):111–126, 2002.

55

[Sch13] Stephan Schulz. System Description: E 1.8. In Ken McMillan, Aart
Middeldorp, and Andrei Voronkov, editors, Proc. of the 19th LPAR,
Stellenbosch, volume 8312 of LNCS, pages 735–743. Springer, 2013.

[Sch18] Stephan Schulz. Light-weight integration of SAT solving into first-
order reasoners – first experiments. In Laura Kovács and Andrei
Voronkov, editors, Vampire 2017. Proceedings of the 4th Vampire
Workshop, volume 53 of EPiC Series in Computing, pages 9–19.
EasyChair, 2018.

[Sch22] S. Schulz. The E Web Site. https://www.eprover.org, 2022.

[SCV19] Stephan Schulz, Simon Cruanes, and Petar Vukmirović. Faster,
higher, stronger: E 2.3. In Pascal Fontaine, editor, Proc. of the
27th CADE, Natal, Brasil, number 11716 in LNAI, pages 495–507.
Springer, 2019.

[SS02] S. Schulz and G. Sutcliffe. System Description: GrAnDe 1.0. In
A. Voronkov, editor, Proc. of the 18th CADE, Copenhagen, volume
2392 of LNAI, pages 280–284. Springer, 2002.

[SSCB12] Geoff Sutcliffe, Stephan Schulz, Koen Claessen, and Peter Baum-
gartner. The TPTP Typed First-order Form with Arithmetic. In
Nikolaj Bjørner and Andrei Voronkov, editors, Proc. of the 18th
LPAR, Merida, volume 7180 of LNAI, pages 406–419. Springer,
2012.

[SSCG06] Geoff Sutcliffe, Stephan Schulz, Koen Claessen, and Allen Van
Gelder. Using the TPTP Language for Writing Derivations and
Finite Interpretations . In Ulrich Fuhrbach and Natarajan Shankar,
editors, Proc. of the 3rd IJCAR, Seattle, volume 4130 of LNAI, pages
67–81. Springer, 2006.

[SSSU] Geoff Sutcliffe, Mark Stickel, Stephan Schulz, and Josef Urban.
Answer Extraction for TPTP. http://www.cs.miami.edu/~tptp/
TPTP/Proposals/AnswerExtraction.html. (acccessed 2013-07-
08).

[Sut09] G. Sutcliffe. The TPTP Web Site. http://www.tptp.org, 2004–
2009. (acccessed 2009-09-28).

[Tam97] T. Tammet. Gandalf. Journal of Automated Reasoning, 18(2):199–
204, 1997. Special Issue on the CADE 13 ATP System Competition.

[VBCS18] Petar Vukmirović, Jasmin Christian Blanchette, Simon Cruanes,
and Stephan Schulz. Extending a brainiac prover to lambda-free
higher-order logic - report version. Technical report, Matryoshka
Project, 2018.

56

[VBCS19] Petar Vukmirović, Jasmin Christian Blanchette, Simon Cruanes,
and Stephan Schulz. Extending a brainiac prover to lambda-free
higher-order logic. In Tomás̆ Vojnar and Lijun Zhang, editors, Proc.
25th Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS’19), number 11427 in LNCS, pages
192–210. Springer, 2019.

[VBCS21] Petar Vukmirović, Jasmin Christian Blanchette, Simon Cruanes,
and Stephan Schulz. Extending a Brainiac Prover to Lambda-free
Higher-Order Logic. International Journal on Software Tools for
Technology Transfer, August 2021.

[VBS23] Petar Vukmirović, Jasmin Christian Blanchette, and Stephan
Schulz. Extending a high-performance prover to higher-order logic.
In Natasha Sharygina and Sriram Sankaranarayanan, editors, Proc.
29th Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS’23), Paris, France, number 13994(2)
in LNCS, pages 111–132. Springer, 2023.

[WAB+99] C. Weidenbach, B. Afshordel, U. Brahm, C. Cohrs, T. Engel,
G. Jung, E. Keen, C. Theobalt, and D. Topic. System Abstract:
SPASS Version 1.0.0. In H. Ganzinger, editor, Proc. of the 16th
CADE, Trento, volume 1632 of LNAI, pages 378–382. Springer,
1999.

[Wei99] C. Weidenbach. Personal communication at CADE-16, Trento. Un-
published, 1999.

[Wei01] C. Weidenbach. SPASS: Combining Superposition, Sorts and Split-
ting. In A. Robinson and A. Voronkov, editors, Handbook of Auto-
mated Reasoning, volume II, chapter 27, pages 1965–2013. Elsevier
Science and MIT Press, 2001.

[WGR96] C. Weidenbach, B. Gaede, and G. Rock. SPASS & FLOTTER Ver-
sion 0.42. In M.A. McRobbie and J.K. Slaney, editors, Proc. of the
13th CADE, New Brunswick, volume 1104 of LNAI, pages 141–145.
Springer, 1996.

57

