





Proceedings of the 12th IJCAR
ATP System Competition (CASC-J12)

Geoff Sutcliffe

University of Miami, USA

Abstract

The CADE ATP System Competition (CASC) is the annual evaluation of fully auto-
matic, classical logic, Automated Theorem Proving (ATP) systems - the world champi-
onship for such systems. CASC-J12 was the twenty-ninth competition in the CASC series.
Nineteen ATP systems competed in the various divisions. These proceedings present the
competition design and information about the competing systems.

1 Introduction

The CADE ATP System Competition (CASC) [105] is the annual evaluation of fully automatic,
classical logic, ATP systems — the world championship for such systems. One purpose of CASC
is to provide a public evaluation of the relative capabilities of ATP systems. Additionally,
CASC aims to stimulate ATP research, motivate development and implementation of robust
ATP systems that can be easily and usefully deployed in applications, provide an inspiring
environment for personal interaction between ATP researchers, and expose ATP systems within
and beyond the ATP community. CASC evaluates the performance of the ATP systems in terms
of the number of problems solved, the number of acceptable solutions (proofs or models) output,
and the average time taken for problems solved, in the context of a bounded number of eligible
problems and specified time limits.

CASC is held at each CADE (the International Conference on Automated Deduction) and
IJCAR (the International Joint Conference on Automated Reasoning) conference — the major
forums for the presentation of new research in all aspects of automated deduction. CASC-J12
was held on 4th July 2024, as part of the 12th International Joint Conference on Automated
Reasoning (IJCAR 2024)!, in Nancy, France. It was the twenty-ninth competition in the CASC
series; see [128| [134] [131], [74) 76l [12'7, [125] [126], [81], [83], I85] [87], 90}, (92 [94] 961 (98], [100], [102], [133],
104 107, 110}, 113], 115, 120, 121, 122] and the CASC web site http://tptp.org/CASC, for
information about previous CASCs. CASC-J12 was organized by Geoff Sutcliffe, and overseen
by a panel consisting of Claudia Nalon, Christoph Wernhard, and Christoph Weidenbach. The
competition was run on computers provided by the StarExec project [69] at the University of
Miami. The CASC-J12 web site provides access to all the resources used before, during, and
after the event: http://tptp.org/CASC/29.

The design and organization of CASC has evolved over the years to a sophisticated state
[128) [129] 124} [130] [72], [73] [75], [77] [78], [79] [80), [82] [84], 86}, [89] (91}, (93], 95}, (97, [99}, [101], [103], [106), [109}
1111 1121 114} [116] [117]. Important changes for CASC-J12 were (for readers already familiar
with the general design of CASC):

e The FNT division went on hiatus.
e The ICU division was added.

LCADE was a constituent conference of the 12th IJCAR, hence CASC-“J12”.
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The CASC rules, specifications, and deadlines are absolute. Only the panel has the right to
make exceptions. It is assumed that all entrants have read the documentation related to the
competition, and have complied with the competition rules. Non-compliance with the rules can
lead to disqualification. A “catch-all” rule is used to deal with any unforeseen circumstances:
No cheating is allowed. The panel is allowed to disqualify entrants due to unfairness, and to
adjust the competition rules in case of misuse.

These proceedings are organized as follows: Section[2]describes the competition divisions and
the ATP systems that entered the various divisions. Sections [3] and [4] describe the competition
infrastructure and the requirements for the ATP systems. Section [5| describes how the systems
are evaluated. Sections[6]and[7]describe the practical steps for registering a system and checking
that is has the required properties. Section 8| provides descriptions (written by the entrants) of
the systems entered into CASC-J12. Section [9] concludes.

A Tense Note: Attentive readers will notice changes between the present and past tenses in
this paper. Many parts of CASC are established and stable — they are described in the present
tense (the rules are the rules). Aspects that were particular to CASC-J12 are described in the
past tense so that they make sense when reading this after the event.

2 Divisions and Systems

CASC is divided into divisions according to problem and system characteristics, in a coarse
version of the TPTP problem library’s Specialist Problem Classes (SPCs) [132]. Each division
uses problems that have certain logical, language, and syntactic characteristics, so that the
systems that compete in a division are, in principle, able to attempt all the problems in the
division. Some divisions are further divided into problem categories that make it possible to
analyze, at a more fine-grained level, which systems work well for what types of problems.
Table 1] catalogs the divisions and problem categories of CASC-J12. The example problems can
be viewed online at http://tptp.org/cgi-bin/SeeTPTP?Category=Problems. Sections
and explain what problems are eligible for use in each division and category.

Systems that do not run in the competition divisions for any reason (e.g., the system requires
special hardware, or the entrant is an organizer) can be entered into the demonstration division.
The demonstration division uses the same problems as the competition divisions, and the entry
specifies which competition divisions’ problems are to be used.

Nineteen ATP systems competed in the various divisions of CASC-J12. The division winners
from the previous CASC (CASC-29) and the Prover9 1109a system are automatically entered
into the corresponding demonstration divisions to provide benchmarks against which progress
can be judged. The systems, the divisions in which they were entered, and their entrants,
are listed in Tables 2] and [3] A division acronym in italics indicates the system was in the
demonstration division. System descriptions are in the competition proceedings [118] and on
the CASC-J12 web site.

3 Infrastructure

3.1 Computers

The competition computers had:

e An octa-core Intel(R) Xeon(R) E5-2667, 3.20GHz CPUs, without hyperthreading
e 128GB memory


http://tptp.org/cgi-bin/SeeTPTP?Category=Problems
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Table 1: Divisions and Problem categories

Division Problems

Problem categories

THF  Typed (monomorphic) Higher-order TNE — THF with No Equality, e.g.,
Form theorems (axioms with a provable NUM738~1.
conjecture). TEQ - THF with EQuality, e.g.,

SET17173.

TFA  Typed (monomorphic) First-order TFI — TFA with only Integer arith-
form theorems with Arithmetic (ax- metic, e.g., DATO16_1.
ioms with a provable conjecture). TFE - TFA with only rEal arithmetic,

e.g., MSC022_2.

TFN  Typed First-order form Non-theorems E.g., COM002_20.
(axioms with a countersatisfiable con-
jecture, and satisfiable axiom sets with-
out a conjecture) without arithmetic.

FOF First-Order Form theorems (axioms FNE — FOF with No Equality, e.g.,
with a provable conjecture). COMOO03+1.

FEQ - FOF with EQuality, e.g.,
SEU147+3.

UEQ Unit EQuality theorems in clause nor- E.g., RNG026-7.
mal form (unsatisfiable clause sets).

SLH  Typed (monomorphic) higher-order The problems were generated from ses-
theorems (axioms with a provable sions in Isabelle’s Archive of Formal
conjecture), generated by Isabelle’s Proofs [14].

SLedgeHammer system [47].
ICU First-order theorems (axioms with a The problems supplied by an entrant

provable conjecture) provided by the
entrants.

were expected to be easy enough for
that entrant’s ATP system, but diffi-

cult for the other entrants’ systems, i.e.,
each entrant is saying to the others: “I
Challenge yoU!”.

e The CentOS Linux release 7.4.1708 (Core) operating system, with
Linux kernel 3.10.0-693.el7.x86_64.

One ATP system runs on one CPU at a time. (Each StarExec computer has two sockets,
i.e., two CPUs, and 256 GiB memory. StarExec uses Linux’s sched_setaffinity to restrict
each system run to a single CPU, and setrlimit to limit memory use to 128 GiB.) Systems can
use all the cores on the CPU, which can be advantageous in divisions where a wall clock time
limit is used. StarExec copies the systems and problems to the compute nodes before starting
execution, so that there are no network delays. The StarExec computers used for CASC are
the same as are publicly available to the TPTP community, which allows system developers to
test and tune their systems in exactly the same environment as is used for the competition.

Demonstration division systems can run on the competition computers, or the computers
can be supplied by the entrant. The CASC-J12 demonstration division systems all used the
competition computers.
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ATP System Divisions Entrant (Associates) Entrant’s Affiliation
Connect++ 0.6.0 FOF ICU Sean Holden University of Cambridge
CSE 1.7 FOF ICU Feng Cao (Yang Xu, Peiyao Liu, JiangXi University of Science
Jun Liu, Shuwei Chen, Guoyan and Technology
Zeng, Jian Zhong, Guanfeng Wu,
Xingxing He, Peng Xu)
CSE_E 1.6 FOF ICU Peiyao Liu (Yang Xu, Feng Cao, Southwest Jiaotong University
Stephan Schulz, Jun Liu, Shuwei
Chen, Guoyan Zeng)
CSG.E 1.6 FOF ICU Peiyao Liu (Yang Xu, Feng Cao, Southwest Jiaotong University
Stephan Schulz, Jun Liu, Shuwei
Chen, Guoyan Zeng)
CSIE 1.6 FOF ICU Peiyao Liu (Yang Xu, Feng Cao, Southwest Jiaotong University
Stephan Schulz, Jun Liu, Shuwei
Chen, Guoyan Zeng)
cveb 1.1.3 THF TFA TFN FOF SLH Andrew Reynolds (Haniel Barbosa, University of Iowa
Cesare Tinelli, Clark Barrett)
Drodi 3.6.0 FOF UEQ ICU Oscar Contreras Amateur Programmer
E 3.1 SLH CASC CASC-29 winner
E 3.2.0 THF FOF UEQ SLH ICU Stephan Schulz DHBW Stuttgart
GKC 0.8 FOF UEQ Tanel Tammet Tallinn University of Technology
iProver 3.9 TFA TFN FOF UEQ ICU Konstantin Korovin (Edvard Holden)  University of Manchester

Table 2: The ATP systems and entrants
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3.2 Problems for the TPTP-based Divisions

The problems for the THF, TFA, TEN, FOF, and UEQ divisions were taken from the Thousands
of Problems for Theorem Provers (TPTP) problem library [10§], v9.0.0. The TPTP version
used for CASC is released after the competition has started, so that new problems in the release
have not been seen by the entrants. The problems have to meet certain criteria to be eligible
for use:

e The TPTP tags problems that are designed specifically to be suited or ill-suited to some
ATP system, calculus, or control strategy as biased They are excluded from the compe-
tition.

e The problems must be syntactically non-propositional.

e The TPTP uses system performance data in the Thousands of Solutions from Theorem
Provers (TSTP) solution library to compute problem difficulty ratings in the range 0.00
(easy) to 1.00 (unsolved) [132] — Problems with ratings in the range 0.21 to 0.99 are
eligible — the upper bound of 0.99 excludes problems that cannot be solved by any system
and thus don’t differentiate between systems; the lower bound of 0.21 was chosen (many
years ago) to exclude almost-easy problems that would be solved by most of the systems
and thus don’t differentiate between systems (the choice of 0.21 has been fortuitously
successfully).

Problems of lesser and greater ratings are made eligible if there are not enough problems
with ratings in that range. For the TFN division of CASC-J12, 59 problems with rating
0.00-0.20 and 48 problems with rating 1.00 were made eligible, because there were only
55 eligible problems with rating 0.21 to 0.99. The organizer considered making these
additional 107 problems eligible to be acceptably useful: solving easy problems would
be encouraging for weaker systems, and solving hard problems would be encouraging for
stronger systems.

Systems can be submitted before the competition so that their performance data is used
in computing the problem ratings — problems that are solved get a rating less than 1.00
and are thus eligible (unless the rating drops below 0.21). The computing of the ratings
also uses performance data from ATP systems that are not entered into the competition,
which can produce ratings that make some problems eligible for selection but easy or
unsolvable for the systems in the competition. Using problems that are solved by all or
none of the competition systems does not affect the competition rankings, has the benefit
of placing the systems’ performances in the context of the state-of-the-art in ATP, but
does reduce the differentiation between the systems in the competition.

In order to ensure that no system receives an advantage or disadvantage due to the specific
presentation of the problems in the TPTP, the problems are preprocessed to

e strip out all comment lines (in particular, the problem header)

e randomly reorder the formulae (include directives are left before the formulae, and type
declarations are left before the symbols’ uses)

e randomly swap the arguments of associative connectives and randomly reverse implica-
tions

e randomly reverse equalities

The numbers of problems used in each division and problem category are constrained by the
numbers of eligible problems, the number of systems entered across the divisions, the number
of CPUs available, the time limits, and the time available for running the competition live in
one conference day, i.e., in about 6 hours. The numbers of problems used are set within these

6
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constraints, according to the judgement of the organizers. The problems used are randomly
selected from the eligible problems based on a seed supplied by the competition panel:

e The selection is constrained so that no division or category contains an excessive number
of very similar problems, according to the “very similar problems” (VSP) lists distributed
with the TPTP [74]: For each problem category in each division, if the category is going to
use N problems and there are L VSP lists that have an intersection of at least N/(L + 1)
with the eligible problems for the category, then maximally N/(L+ 1) problems are taken
from each of those VSP lists.

e In order to combat excessive tuning towards problems that were already in the preceding
released TPTP version, the selection is biased to select problems that are new in the TPTP
version used until 50% of the problems in each problem category have been selected or
there are no more new problems to select, after which random selection from old and
new problems continues. The number of new problems used depends on how many new
problems are eligible and the limitation on very similar problems.

e Problems with rating 0.21 to 0.99 are selected before problems with other ratings.

The problems are given to the ATP systems as files in TPTP format, with include direc-
tives, in increasing order of TPTP difficulty rating.

3.3 Problems for the SLH Division

For the SLH division of CASC-29, Isabelle’s Sledgehammer system was used to generate 8400
problems that could be used, of which 1000 appropriately difficult problems were selected based
on performance data [117, [122]. For the SLH division of CASC-J12, the same problem set was
used, but 1000 different problems were selected. The same CPU limit limit was imposed. This
was announced in advance of CASC-J12, so that developers could tune their systems using
the CASC-29 problems. The problems are given in a roughly estimated increasing order of
difficulty.

3.4 Problems for the ICU Division

Each entrant had to submit 5 to 10 FOF problems that have a conjecture. The problems had
to be provided in decreasing order of desired use in the division, i.e., probably from hardest to
easiest for other systems. The problems had to all be different, as assessed by the competition
organizers. Problems from the TPTP problem library had their include directives expanded.
At least five problems were taken from each entrant’s submission, in the order specified, and
all systems attempted all the selected problems. The problems were given in the reverse of the
decreasing order of desired use, so that the ”easier” problems were used before ”harder” ones.

It was expected that each entrant would submit problems that are easy enough for that
entrant’s system, but difficult for the other entrants’ systems, i.e., each entrant is saying to the
others: ”I Challenge yoU!”.

3.5 Time Limits

In the TPTP-based divisions time limits are imposed for each problem. The minimal time limit
for each problem is 120 s. The maximal time limit for each problem is constrained by the same
factors that constrain the numbers of problems that are used. The time limit is chosen as a
reasonable value within the range allowed according to the judgement of the organizers, and
is announced at the competition. In CASC-J12 a wall clock time limit was imposed for each

7
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problem, and no CPU time limits were imposed (so that it can be advantageous to use all the
cores on the CPU).

In the SLH division a CPU time limit is imposed for each problem. The limit is between
15 s and 90 s, which is the range of CPU time that can be usefully allocated for a proof attempt
in the Sledgehammer context.? The time limit is chosen as a reasonable value within the range
allowed according to the judgement of the organizers, and is announced at the competition.

In the ICU division a wall clock time limit is imposed for each problem, and no CPU time
limits are imposed (so that it can be advantageous to use all the cores on the CPU). The limit
is between 300 s and 600 s, and is announced at the competition.

4 System Entry, Delivery, and Execution

Systems can be entered at only the division level, and can be entered into more than one
division. A system that is not entered into a division is assumed to perform worse than the
entered systems, for that type of problem — wimping out is not an option. Entering many
similar versions of the same system is deprecated, and entrants might be required to limit the
number of system versions that they enter. Systems that rely essentially on running other ATP
systems without adding value are deprecated; such systems might be disallowed or moved to
the demonstration division.

The ATP systems entered into CASC are delivered to the competition organizer as StarExec
installation packages, which the organizer installs and tests on StarExec. Source code is deliv-
ered separately, under the trusting assumption that the installation package does correspond to
the source code. After the competition all competition division systems’ StarExec and source
code packages are made available on the CASC web site. This allows anyone to use the systems
on StarExec, and to examine the source code. An open source license is encouraged, to allow
the systems to be freely used, modified, and shared. Many of the StarExec packages include
statically linked binaries that provide further portability and longevity of the systems.

For systems running on entrant supplied computers in the demonstration division, entrants
must email a .tgz file containing the source code and any files required for building the exe-
cutable system to the competition organizers by the system delivery deadline. In the demon-
stration division the entrant specifies whether or not the source code is placed on the CASC
web site.

The ATP systems must be fully automatic. They are executed as black boxes, on one
problem at a time. Any command line parameters have to be the same for all problems in
each division. The ATP systems must be sound, and are tested for soundness by submitting
non-theorems to the systems in the THF, TFA, FOF, UEQ, and SLH divisions, and theorems
to the systems in the TFN division. Claiming to have found a proof of a non-theorem or a
disproof of a theorem indicates unsoundness. If a system fails the soundness testing it must be
repaired by the unsoundness repair deadline or be withdrawn.

5 System Evaluation

CASC ranks the ATP systems at only the division level. For each ATP system, for each problem,
four items of data are recorded: whether or not the problem was solved, the CPU and wall
clock times taken (as measured by StarExec’s runsolver utility [59], and prepended to each
line of the system’s stdout), and whether or not a solution (proof or model) was output. The

2 According to a personal communication from Jasmin Blanchette, and he should know.



CASC-J12 Geoff Sutcliffe

systems are ranked according to the number of problems solved with an acceptable solution
output. Ties are broken according to the average time taken over problems solved. Trophies
are awarded to the competition divisions’ winners.

The competition panel decides whether or not the systems’ solutions are “acceptable”. The
criteria include:

e Derivations must be complete, starting at formulae from the problem, and ending at the
conjecture (for axiomatic proofs) or a false formula (for proofs by contradiction, e.g.,
CNF refutations).

e For solutions that use translations from one form to another, e.g., translation of FOF
problems to CNF, the translations must be adequately documented.

e Derivations must show only relevant inference steps.

e Inference steps must document the parent formulae, the inference rule used, and the
inferred formula.

e Inference steps must be reasonably fine-grained.

e An unsatisfiable set of ground instances of clauses is acceptable for establishing the un-
satisfiability of a set of clauses.

e Models must be complete, documenting the domain, function maps, and predicate maps.
The domain, function maps, and predicate maps may be specified by explicit ground lists
(of mappings), or by any clear, terminating algorithm.

In addition to the ranking data, other measures are made and presented in the results:

e The state-of-the-art contribution (SotAC) quantifies the unique abilities of each system.
For each problem solved by a system, its Sot AC for the problem is the fraction of systems
that do not solve the problem. A system’s overall SotAC is the average SotAC over the
problems it solves but that are not solved by all the systems.

e The efficiency measure combines the number of problems solved with the time taken. It is
the average solution rate over the problems solved multiplied by the fraction of problems
solved (the solution rate for one problem is the reciprocal of the time taken to solve it).
Efficiency is computed for both CPU time and wall clock time, to measure how efficiently
the systems use one core and multiple cores respectively.

e The core usage measures the extent to which the systems take advantage of multiple cores.
The raw core usage is the ratio of CPU time to wall clock time used, and the average
core usage is over problems solved with a raw core usage greater than 1.0. The number of
problems solved with a lesser raw core usage is also reported, because the ability to solve
problems quickly before multi-core search is necessary is also of interest. The competition
ran on octa-core computers, thus the maximal core usage was 8.0.

At some time after the competition all high ranking systems in each division are tested
over the entire TPTP. This provides a final check for soundness. If a system is found to be
unsound during or after the competition, but before the competition report is published, and
it cannot be shown that the unsoundness did not manifest itself in the competition, then the
system is retrospectively disqualified. At some time after the competition, the solutions from
the winners are checked by the panel. If any of the solutions are unacceptable, i.e., they are
sufficiently worse than the samples provided, then that system is retrospectively disqualified.
All disqualifications are explained in the competition report.

The demonstration division results are presented along with the competition divisions’ re-
sults, but might not be comparable with those results. The demonstration division is not
ranked.
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6 System Registration

ATP systems must be registered for the competition using the CASC system registration form,
by the registration deadline. For each system an entrant must be nominated to handle all issues
(e.g., installation and execution difficulties) arising before, during, and after the competition.
The nominated entrant must formally register for CASC. It is not necessary for entrants to
physically attend the competition.

6.1 System Descriptions

A system description has to be provided for each ATP system, using the HTML schema supplied
on the CASC web site. The schema has the following sections:

e Architecture. This section introduces the ATP system, and describes the calculus and
inference rules used.

e Strategies. This section describes the search strategies used, why they are effective, and
how they are selected for given problems. Any strategy tuning that is based on specific
problems’ characteristics must be clearly described (and justified in light of the tuning
restrictions described in Section @

e Implementation. This section describes the implementation of the ATP system, including
the programming language used, important internal data structures, and any special code
libraries used. The availability of the system is also given here.

e Expected competition performance. This section makes some predictions about the per-
formance of the ATP system for each of the divisions and categories in which it is com-
peting.

e References.

The system description has to be emailed to the competition organizers by the system
description deadline. The system descriptions form part of the competition proceedings (Sec-

tion .

6.2 Sample Solutions

For systems in the divisions that require solution output, representative sample solutions must
be emailed to the competition organizers by the sample solutions deadline. Use of the TPTP for-
mat for proofs and finite interpretations is encouraged. The competition panel decides whether
or not each system’s solutions are acceptable (see Section .

Proof/model samples are required as follows:

e THF and SLH: SET014°4

e TFA: DAT013=1

e TFN: HWV042_1 and HWV042_3 (but as these problems are rather difficult, some systems
were given two easier problems from TPTP v8.2.0: COM001_10 and DAT335_2).

e FOF and ICU : SEU140+2

e UEQ: B0O0001-1

An explanation must be provided for any non-obvious features.

10
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7

System Requirements

Entrants must ensure that their systems execute in the competition environment, and have
the following properties. Entrants are advised to finalize their installation packages and check
these properties well in advance of the system delivery deadline. This gives the competition
organizers time to help resolve any difficulties encountered.

Execution, Soundness, and Completeness

Systems must be fully automatic, i.e., all command line switches have to be the same for
all problems in each division.

Systems’ performances must be reproducible by running the system again.

Systems must be sound.

Systems do not have to be complete in any sense, including calculus, search control,
implementation, or resource requirements.

All techniques used must be general purpose, and expected to extend usefully to new
unseen problems. The precomputation and storage of information about individual prob-
lems that might appear in the competition, or their solutions, is not allowed. Strategies
and strategy selection based on individual problems or their solutions are not allowed. If
machine learning procedures are used to tune a system, the learning must ensure that
sufficient generalization is obtained so that no there is no specialization to individual
problems. The system description must explain any such tuning or training that has been
done. The competition panel may disqualify any system that is deemed to be problem
specific rather than general purpose.

Output

All solution output must be to stdout.

For each problem, the system must output a distinguished string indicating what solution
has been found or that no conclusion has been reached. Systems must use the SZS
ontology and standards [88] for this. For example

SZS status Theorem for SYNO75+1
or
SZS status GaveUp for SYNO75+1

When outputting a solution, the start and end of the solution must be delimited by
distinguished strings. Systems must use the SZS ontology and standards for this. For
example

SZS output start CNFRefutation for SYNO75-1.p

SZS output end CNFRefutation for SYNO75-1.p

The string specifying the problem status must be output before the start of a solution.
Use of the TPTP format for proofs and finite interpretations [123] is encouraged.
Solutions may not have irrelevant output (e.g., from other threads running in parallel)
interleaved in the solution.

11
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Resource Usage

12

e Systems must be interruptible by a SIGXCPU signal so that CPU time limits can be imposed,

and interruptible by a SIGALRM signal so that wall clock time limits can be imposed. For
systems that create multiple processes the signal is sent first to the process at the top of
the hierarchy, then one second later to all processes in the hierarchy. The default action
on receiving these signals is to exit (thus complying with the time limit, as required), but
systems may catch the signals and exit of their own accord. If a system runs past a time
limit this is noticed in the timing data, and the system is considered to have not solved
the problem.

If a system terminates of its own accord it may not leave any temporary or intermediate
output files. If a system is terminated by a SIGXCPU or SIGALRM it may not leave any
temporary or intermediate files anywhere other than in /tmp.

For practical reasons excessive output from an ATP system is not allowed. A limit,
dependent on the disk space available, is imposed on the amount of output that can be
produced.
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8 The ATP Systems

These system descriptions were written by the entrants.

8.1 Connect++ 0.6.0

Sean Holden
University of Cambridge, United Kingdom

Architecture

Connect++ Version 0.6.0 is the current publicly-available release of the Connect++ prover
for first-order logic, introduced in [32]. It is a connection prover using the same calculus and
inference rules as leanCoP [46]. That is, it uses the connection caclulus with regularity and
(optionally) with lemmas.

Strategies

The (default) proof search is essentially the same as that used by leanCoP Version 2.1. That
is, it employs a search trying left branches of extensions first, with restricted backtracking as
described in [46], and using the leftmost literal of the relevant clause for all inference rules. It
does not attempt to exactly reproduce leanCoP’s search order. When not using a schedule,
command-line options allow many of these choices to be altered; for example allowing back-
tracking restriction for extensions while still fully exploring left branches, or other modification
of the backtracking restrictions. If run with its default schedule it uses one similar to that of
leanCoP Version 2.1, including the various applications of definitional clause conversion. Alter-
natively it can read and apply arbitrary schedules if desired. At present Connect++ does not
attempt to tune its proof search based on the characteristics of individual problems.

Implementation

Connect++ is implemented in C++ - minimally the 2017 standard - and built using cmake.
Libraries from the Boost collection are used for parsing, hashing, some random number gen-
eration, and processing of command-line options. The system has a built-in proof checker for
verifying its own output, but also includes a standalone checker implemented in SWI Prolog.

As substitutions need to apply to an entire proof tree the system only represents each variable
once and shares the representation, simultaneously maintaining a stack of substitutions making
removal of substitutions under backtracking trivial. It also creates subterms only once and
shares them; these are indexed allowing constant-time lookup, and nothing is ever removed
from the index, meaning that if a term is constructed again after its initial construction no new
memory allocation takes place and the term itself is obtained in constant time. At the same
time, fresh copies of variables are recycled under backtracking - these two design choices appear
to interact very effectively, as the recycling of the variables seems to make it quite likely that
subterms already in the index can be reused.

By default a standard recursive unification algorithm is used, but a polynomial-time version
is optional.

If a schedule is used, it is assumed that different approaches to definitional clause conversion
may be needed - typically all clauses, conjecture clauses only, or no clauses. As these choices
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can lead to different matrices, and the conversion itself can be expensive, the system stores and
switches between the different matrices rather than converting multiple times.

As the system was developed with two guiding aims - to provide a clear implementation
easily modified by others, somewhat in the spirit of MiniSAT [22], and to support experiments
in machine learning for guiding the proof search - the implementation avoids the use of direct
recusion in favour of a pair of stacks and an iterative implementation based on these, as de-
scribed in [32]. This allows complete and arbitrary control of backtracking restriction and other
modifications to the proof search using typically quite simple modifications to the code.

The source and documentation are available at

http://www.cl.cam.ac.uk/"sbhll/connect++.html

Expected Competition Performance

The system remains at an early stage of development and is currently undergoing systematic
profiling and improvement. It is not expected at this stage to be competitive.

8.2 CSE 1.7

Feng Cao
JiangXi University of Science and Technology, China

Architecture

CSE 1.7 is a developed prover based on the last version - CSE 1.6. It is an automated theorem
prover for first-order logic without equality, based mainly on a novel inference mechanism called
Contradiction Separation Based Dynamic Multi-Clause Synergized Automated Deduction (S-
CS) [146]. S-CS is able to handle multiple (two or more) clauses dynamically in a synergized way
in one deduction step, while binary resolution is a special case. CSE 1.7 also adopts conventional
factoring, equality resolution (ER rule), and variable renaming. Some pre-processing techniques,
including pure literal deletion and simplification based on the distance to the goal clause, and
a number of standard redundancy criteria for pruning the search space: tautology deletion,
subsumption (forward and backward), are applied as well. CSE 1.7 has been improved compared
with CSE 1.6, mainly from the following aspects:

1. A multi-clause contradiction separation deduction algorithm based on unit clauses has
been proposed, which can effectively enhance the reasoning ability of unit clauses for
multi-clause deduction.

2. A multi-clause synergized deduction algorithm with full use of synergized clauses is pro-
posed, which can make the unify substitution of candidate literals involved in deduction
from simple to complex, thus effectively optimizing the multi-clause deduction search
path.

Internally CSE 1.7 works only with clausal normal form. The E prover [65] is adopted with
thanks for clausification of full first-order logic problems during preprocessing.
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Strategies

CSE 1.7 inherited most of the strategies in CSE 1.6. The main new strategies are:

e By analyzing clause influence degree, the number of remaining literals, and literal deduc-
tion ability in the process of multi-clause dynamic deduction, a clause evaluation method
based on the clause comprehensive weight is proposed, which can effectively control the
number of literals in the contradiction separation clause.

e By analyzing the relationship and differences between variables, functions, and constants,
a stability based on clause measurement and calculation method is proposed, which can
effectively evaluate clauses with different term structures. The lower the stability of
clauses, the easier it is to participate in deduction.

Implementation

CSE 1.7 is implemented mainly in C++, and Java is used for batch problem running im-
plementation. A shared data structure is used for constants and shared variables storage. In
addition, special data structure is designed for property description of clause, literal and term,
so that it can support the multiple strategy mode. E prover is used for clausification of FOF
problems, and then TPTP4X is applied to convert the CNF format into TPTP format.

Expected Competition Performance

CSE 1.7 has made some improvements compared to CSE 1.6, and so we expect a better
performance in this year’s competition.

Acknowledgement: Development of CSE 1.7 has been partially supported by the General
Research Project of Jiangxi Education Department (Grant No. GJJ200818).

8.3 CSE.E 1.6

Peiyao Liu
Southwest Jiaotong University, China

Architecture

CSE_E 1.6 is an automated theorem prover for first-order logic by combining CSE 1.6 and
E 3.1, where CSE 1.6 is based on the Contradiction Separation Based Dynamic Multi-Clause
Synergized Automated Deduction (S-CS) [146] and E is mainly based on superposition. The
combination mechanism is like this: E and CSE are applied to the given problem sequentially.
If either prover solves the problem, then the proof process completes. If neither CSE nor E can
solve the problem, some inferred clauses with no more than two literals, especially unit clauses,
by CSE will be fed to E as lemmas, along with the original clauses, for further proof search.

This kind of combination is expected to take advantage of both CSE and E, and produce a
better performance. Concretely, CSE is able to generate a good number of unit clauses, based
on the fact that unit clauses are helpful for proof search and equality handling. On the other
hand, E has a good ability on equality handling.
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Strategies

The CSE part of CSE_E 1.6 takes almost the same strategies as in that in CSE 1.6 stan-
dalone, e.g., clause/literal selection, strategy selection, and CSC strategy. The only difference
is that equality handling strategies of CSE part of the combined system are blocked. The main
new strategies for the combined systems are:

e Lemma filtering mainly based on deduction weight of binary clauses.
e Fine-grained dynamic time allocation scheme in different run stages.

Implementation

CSE_E 1.6 is implemented mainly in C++, and Java is used for batch problem running
implementation. The job dispatch between CSE and E is implemented in C++.

Expected Competition Performance

We expect CSE_E 1.6 to solve some hard problems that E cannot solve and have a satisfying
performance.

Acknowledgement: Development of CSE_E 1.6 has been partially supported by the Na-
tional Natural Science Foundation of China (NSFC) (Grant No. 61976130). Stephan Schulz
for his kind permission on using his E prover that makes CSE_E possible.

8.4 CSG.E 1.0

Peiyao Liu
Southwest Jiaotong University, China

Architecture

CSG_E 1.0 is an automated theorem prover for first-order logic by combining CSG 1.0 and
E 3.1, where CSG 1.0 is based on the Contradiction Separation Based Dynamic Multi-Clause
Synergized Automated Deduction (S-CS) [146] and E is mainly based on superposition. CSG
uses a new deduction calculus based on S-CS rule called gridle construction method. The main
idea of the new method is to select N literals to construct a maximal standard contradiction
(called a gridle), then use the gridle to match the clauses until the gridle is filled, and finally
the literals tha cannot be matched are composed into the new inferred clause. The combination
mechanism is like this: E and CSG are applied to the given problem sequentially. If either
prover solves the problem, then the proof process completes. If neither CSG nor E can solve
the problem, some inferred clauses with no more than two literals, especially unit clauses, by
CSG will be fed to E as lemmas, along with the original clauses, for further proof search. This
kind of combination is expected to take advantage of both CSE and E, and produce a better
performance. Concretely, CSE is able to generate a good number of unit clauses, based on the
fact that unit clauses are helpful for proof search and equality handling. On the other hand, E
has a good ability on equality handling.
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Strategies

The CSG part of CSG_E 1.0 takes almost the new strategies as in that in CSG 1.0 standalone,
e.g., clause/literal selection, gridle generation literal strategy, gridle-size adjustment strategy
and CSC strategy. The only difference is that equality handling strategies of CSG part of the
combined system are blocked.

Implementation

CSG_E 1.0 is implemented mainly in C4++, and Java is used for batch problem running
implementation. The job dispatch between CSG and E is implemented in C++.

Expected Competition Performance

We expect CSG_E 1.0 to solve some hard problems that E cannot solve and have a satisfying
performance.

Acknowledgement: Development of CSG_E 1.0 has been partially supported by the Na-
tional Natural Science Foundation of China (NSFC) (Grant No. 61976130). Stephan Schulz
for his kind permission on using his E prover that makes CSE_E possible.

85 CSIE1.0

Guoyan Zeng
Southwest Jiaotong University, China

Architecture

CSILE 1.0 is an automated theorem prover for first-order logic, combining CSI 1.0 and E,
where CSI 1.0 is a multi-layer inverse and parallel prover based on the Contradiction Separation
Based Dynamic Multi-Clause Synergized Automated Deduction (S-CS) [146] and E is mainly
based on superposition. The combination mechanism is like this: E and CSI are applied to
the given problem sequentially. If either prover solves the problem, then the proof process
completes. If neither CSI nor E can solve the problem, some inferred clauses with no more than
two literals, especially unit clauses, by CSI will be fed to E as lemmas, along with the original
clauses, for further proof search. This kind of combination is expected to take advantage of
both CSI and E, and produce a better performance. Concretely, CSI is able to generate a good
number of unit clauses, based on the fact that unit clauses are helpful for proof search and
equality handling. On the other hand, E has a good ability on equality handling.

Strategies

The CSI part of CSI_E 1.0 takes almost the same strategies as in that in CSE 1.6 standalone,
e.g., clause/literal selection, strategy selection, and CSC strategy. The only difference is that
equality handling strategies of CSE part of the combined system are blocked. The main new
strategies for the combined systems are:

e Complementary ratio strategy. A measure and calculation method of complementary
relation between two clauses, which can guide the selection of clauses to participate in
deduction and plan the deduction path effectively.
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e Portfolio strategy clause selection schemes for different run stages.

Implementation

CSI.E 1.0 is implemented mainly in C++, and Java is used for batch problem running
implementation. The job dispatch between CSI and E is implemented in C++.

Expected Competition Performance

We expect CSI_E 1.0 to solve some hard problems that E cannot solve and have a satisfying
performance.

Acknowledgement: Development of CSE_E 1.6 has been partially supported by the Na-
tional Natural Science Foundation of China (NSFC) (Grant No. 62106206, 62206227). Stephan
Schulz for his kind permission on using his E prover that makes CSE_E possible.

86 c¢vech 1.1.3

Andy Reynolds
University of lTowa, USA

Architecture

cveh [3] is the successor of CVCA4 [6]. It is an SMT solver based on the CDCL(T) architecture
[44] that includes built-in support for many theories, including linear arithmetic, arrays, bit
vectors, datatypes, finite sets and strings. It incorporates approaches for handling universally
quantified formulas. For problems involving free function and predicate symbols, cveb primarily
uses heuristic approaches based on conflict-based instantiation and E-matching for theorems,
and finite model finding approaches for non-theorems.

Like other SMT solvers, cvch treats quantified formulas using a two-tiered approach. First,
quantified formulas are replaced by fresh Boolean predicates and the ground theory solver(s)
are used in conjunction with the underlying SAT solver to determine satisfiability. If the prob-
lem is unsatisfiable at the ground level, then the solver answers “unsatisfiable”. Otherwise,
the quantifier instantiation module is invoked, and will either add instances of quantified for-
mulas to the problem, answer “satisfiable”, or return unknown. Finite model finding in cvch
targets problems containing background theories whose quantification is limited to finite and
uninterpreted sorts. In finite model finding mode, cvch uses a ground theory of finite cardinal-
ity constraints that minimizes the number of ground equivalence classes, as described in [57].
When the problem is satisfiable at the ground level, a candidate model is constructed that
contains complete interpretations for all predicate and function symbols. It then adds instances
of quantified formulas that are in conflict with the candidate model, as described in [57]. If no
instances are added, it reports “satisfiable”.

cved has native support for problems in higher-order logic, as described in [5]. It uses a
pragmatic approach for HOL, where lambdas are eliminated eagerly via lambda lifting. The
approach extends the theory solver for quantifier-free uninterpreted functions (UF) and E-
matching. For the former, the theory solver for UF in cvch now handles equalities between
functions using an extensionality inference. Partial applications of functions are handle using
a (lazy) applicative encoding where some function applications are equated to the applicative
encoding. For the latter, several of the data structures for E-matching have been modified to
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incorporate matching in the presence of equalities between functions, function variables, and
partial function applications.

Strategies

For handling theorems, cveh primarily uses conflict-based quantifier instantiation [56) 4],
enumerative instantiation [54] and E-matching. cvcb uses a handful of orthogonal trigger se-
lection strategies for E-matching, and several orthogonal ordering heuristics for enumerative
instantiation. For handling non-theorems, cvcb primarily uses finite model finding techniques.
Since cved with finite model finding is also capable of establishing unsatisfiability, it is used as
a strategy for theorems as well.

Implementation

cveb is implemented in C++. The code is available from

https://github.com/cvch/cvch

Expected Competition Performance

The performance of cveb will be comparable to last year. We continue to rely on a conversion
from TPTP to smt2 as a preprocess step. This year, we have added various new strategies to
TFN and THF, including a new instantiation strategy that combines model-based quantifier
instantiation [24] with enumerative syntax-guided synthesis [55].

8.7 Drodi 3.6.0

Oscar Contreras
Amateur Programmer, Spain

Architecture

Drodi 3.6.0 is a very basic and lightweight automated theorem prover. It implements the
following main features:

e Ordered resolution and equality paramodulation inferences as well as demodulation and
some other standard simplifications.

A basic implementations of clausal normal form conversion as in [45].
AVATAR architecture with a SAT solver [140].

Limited Resource Strategy [58].

Discrimination trees.

KBO, non recursive and lexicographic reduction orderings.

Improved literal selection including lookahead as in [28].

SinE distance for clauses and symbols as in [70].

Layered clause selection as in [25].

Stochastic strategy inspired in [71].

Drodi produces a (hopefully) verifiable proof in TPTP format.
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Strategies

Drodi has a fair number of selectable strategies including but not limited to the following:

Otter, Discount and Limited Resource Strategy [58] saturation algorithms.

A Dbasic implementation of AVATAR architecture [140].

Several literal and term reduction orderings.

Several literal selection options [28].

Several layered clause selection heuristics with adjustable selection ratios [25].
Classical clause relevancy pruning.

Some strategies are run a second time with a previously applied randomization to the
problem [71].

Drodi can generate a learning file from successful proofs and use the file to guide clause
selection strategy. It is based in the enhanced ENIGMA method. However, unlike
ENIGMA, the learning file is completely general and can be used with any kind of prob-
lems. This generality allows the use of the same learning file in both FOF and UEQ CASC
competition divisions. The learning file is generated over a set of TPTP problems before
the CASC competition using built-in Drodi functions that include a L2 Support Vector
Machine. Drodi integrated learning functions are a generalization of ENIGMA [33] [34].
Literals polarity, equality, skolem and variable occurrences are stored in clause feature
vectors. Unlike ENIGMA, instead of storing the specific functions and predicates them-
selves only the SinE distance and arity of functions and non equality predicates are stored
in clause feature vectors with different features assigned to predicates and functions.

Implementation

Drodi is implemented in C. It includes discrimination trees and hashing indexing. All the
code is original, without special code libraries or code taken from other sources.

Expected Competition Performance

Drodi 3.6.0 is basically the same solver as last year with only minor improvements so per-
formance will be similar to CASC-29.

88 E 3.1

Stephan Schulz
DHBW Stuttgart, Germany

Architecture

E [61L [65] [66] is a purely equational theorem prover for many-sorted first-order logic with
equality, and for monomorphic higher-order logic. It consists of an (optional) clausifier for pre-
processing full first-order formulae into clausal form, and a saturation algorithm implementing
an instance of the superposition calculus with negative literal selection and a number of redun-
dancy elimination techniques, optionally with higher-order extensions [141], [143]. E is based
on the DISCOUNT-loop variant of the given-clause algorithm, i.e., a strict separation of active
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and passive facts. No special rules for non-equational literals have been implemented. Resolu-
tion is effectively simulated by paramodulation and equality resolution. As of E 2.1, PicoSAT
[13] can be used to periodically check the (on-the-fly grounded) proof state for propositional
unsatisfiability.

Strategies

Proof search in E is primarily controlled by a literal selection strategy, a clause selection
heuristic, and a simplification ordering. The prover supports a large number of pre-programmed
literal selection strategies. Clause selection heuristics can be constructed on the fly by combining
various parameterized primitive evaluation functions, or can be selected from a set of predefined
heuristics. Clause evaluation heuristics are based on symbol-counting, but also take other clause
properties into account. In particular, the search can prefer clauses from the set of support,
or containing many symbols also present in the goal. Supported term orderings are several
parameterized instances of Knuth-Bendix-Ordering (KBO) and Lexicographic Path Ordering
(LPO), which can be lifted in different ways to literal orderings.

For CASC-29, E implements a two-stage multi-core strategy-scheduling automatic mode.
The total CPU time available is broken into several (unequal) time slices. For each time slice,
the problem is classified into one of several classes, based on a number of simple features
(number of clauses, maximal symbol arity, presence of equality, presence of non-unit and non-
Horn clauses, possibly presence of certain axiom patterns...). For each class, a schedule of
strategies is greedily constructed from experimental data as follows: The first strategy assigned
to a schedule is the the one that solves the most problems from this class in the first time slice.
Each subsequent strategy is selected based on the number of solutions on problems not already
solved by a preceding strategy. The strategies are then scheduled onto the available cores and
run in parallel.

About 140 different strategies have been thoroughly evaluated on all untyped first-order
problems from TPTP 7.3.0. We have also explored some parts of the heuristic parameter space
with a short time limit of 5 seconds. This allowed us to test about 650 strategies on all TPTP
problems, and an extra 7000 strategies on UEQ problems from TPTP 7.2.0. About 100 of these
strategies are used in the automatic mode, and about 450 are used in at least one schedule.

Implementation

E is build around perfectly shared terms, i.e. each distinct term is only represented once
in a term bank. The whole set of terms thus consists of a number of interconnected directed
acyclic graphs. Term memory is managed by a simple mark-and-sweep garbage collector. Un-
conditional (forward) rewriting using unit clauses is implemented using perfect discrimination
trees with size and age constraints. Whenever a possible simplification is detected, it is added
as a rewrite link in the term bank. As a result, not only terms, but also rewrite steps are
shared. Subsumption and contextual literal cutting (also known as subsumption resolution) is
supported using feature vector indexing [64]. Superposition and backward rewriting use fin-
gerprint indexing [63], a new technique combining ideas from feature vector indexing and path
indexing. Finally, LPO and KBO are implemented using the elegant and efficient algorithms
developed by Bernd Léchner in [39] [40]. The prover and additional information are available at

https://www.eprover.org
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Expected Competition Performance

E 3.1 is the CASC-29 SLH winner.

8.9 E 3.2.0

Stephan Schulz
DHBW Stuttgart, Germany

Architecture

E [61L 65 [66] is a purely equational theorem prover for many-sorted first-order logic with
equality, and for monomorphic higher-order logic. It consists of an (optional) clausifier for pre-
processing full first-order formulae into clausal form, and a saturation algorithm implementing
an instance of the superposition calculus with negative literal selection and a number of redun-
dancy elimination techniques, optionally with higher-order extensions [141], [143]. E is based
on the DISCOUNT-loop variant of the given-clause algorithm, i.e., a strict separation of active
and passive facts. No special rules for non-equational literals have been implemented. Resolu-
tion is effectively simulated by paramodulation and equality resolution. As of E 2.1, PicoSAT
[13] can be used to periodically check the (on-the-fly grounded) proof state for propositional
unsatisfiability.

Strategies

Proof search in E is primarily controlled by a literal selection strategy, a clause selection
heuristic, and a simplification ordering. The prover supports a large number of pre-programmed
literal selection strategies. Clause selection heuristics can be constructed on the fly by combining
various parameterized primitive evaluation functions, or can be selected from a set of predefined
heuristics. Clause evaluation heuristics are based on symbol-counting, but also take other clause
properties into account. In particular, the search can prefer clauses from the set of support,
or containing many symbols also present in the goal. Supported term orderings are several
parameterized instances of Knuth-Bendix-Ordering (KBO) and Lexicographic Path Ordering
(LPO), which can be lifted in different ways to literal orderings.

For CASC-J12, E implements a two-stage multi-core strategy-scheduling automatic mode.
The total CPU time available is broken into several (unequal) time slices. For each time slice,
the problem is classified into one of several classes, based on a number of simple features
(number of clauses, maximal symbol arity, presence of equality, presence of non-unit and non-
Horn clauses, possibly presence of certain axiom patterns, ...). For each class, a schedule of
strategies is greedily constructed from experimental data as follows: The first strategy assigned
to a schedule is the the one that solves the most problems from this class in the first time slice.
Each subsequent strategy is selected based on the number of solutions on problems not already
solved by a preceding strategy. The strategies are then scheduled onto the available cores and
run in parallel.

About 140 different strategies have been thoroughly evaluated on all untyped first-order
problems from TPTP 7.3.0. We have also explored some parts of the heuristic parameter space
with a short time limit of 5 seconds. This allowed us to test about 650 strategies on all TPTP
problems, and an extra 7000 strategies on UEQ problems from TPTP 7.2.0. About 100 of these
strategies are used in the automatic mode, and about 450 are used in at least one schedule.
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Implementation

E is build around perfectly shared terms, i.e., each distinct term is only represented once
in a term bank. The whole set of terms thus consists of a number of interconnected directed
acyclic graphs. Term memory is managed by a simple mark-and-sweep garbage collector. Un-
conditional (forward) rewriting using unit clauses is implemented using perfect discrimination
trees with size and age constraints. Whenever a possible simplification is detected, it is added
as a rewrite link in the term bank. As a result, not only terms, but also rewrite steps are
shared. Subsumption and contextual literal cutting (also known as subsumption resolution) is
supported using feature vector indexing [64]. Superposition and backward rewriting use fin-
gerprint indexing [63], a new technique combining ideas from feature vector indexing and path
indexing. Finally, LPO and KBO are implemented using the elegant and efficient algorithms
developed by Bernd Lochner in [39] [40]. The prover and additional information are available at

https://www.eprover.org

Expected Competition Performance

E 3.2.0 is basically E 3.1 made more robust and somewhat more efficient. We have not yet
been able to evaluate and integrate new search strategies making full use of all new features.
As a result, we expect performance to be similar to last year’s version. The system is expected
to perform well in most proof classes, but will at best complement top systems in the disproof
classes.

8.10 GKC 0.8

Tanel Tammet
Tallinn University of Technology, Estonia

Architecture

GKC [135] is a resolution prover optimized for search in large knowledge bases. The GKC
version 0.8 running at CASC-29 is a marginally improved version of the GKC 0.7 running in
two previous CASCs. Almost all of the GKC development effort this year has gone to the
commonsense superstructure GK and the natural language reasoning pipeline [138].

GKC is used as a foundation (GK Core) for building a common-sense reasoner GK. In par-
ticular, GK can handle inconsistencies and perform probabilistic and nonmonotonic reasoning
[136], [137].

The WASM version of the previous GKC 0.6 is used as the prover engine in the educational
system. It can read and output proofs in the TPTP, simplified TPTP and JSON format, the
latter compatible with JSON-LD [139).

GKC only looks for proofs and does not try to show non-provability. These standard infer-
ence rules have been implemented in GKC:

e Binary resolution with optionally the set of support strategy, negative or positive ordered

resolution or unit restriction.

e Hyperresolution.

e Factorization.

e Paramodulation and demodulation with the Knuth-Bendix ordering.
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GKC includes an experimental implementation of propositional inferencing and instance gen-
eration, which we do not plan to use during the current CASC.

Strategies

GKC uses multiple strategies run sequentially, with the time limit starting at 0.1 seconds for
each, increased 10 or 5 times once the whole batch has been performed. The strategy selections
takes into consideration the basic properties of the problem: the presence of equality and the
approximate size of the problem.

We perform the selection of a given clause by using several queues in order to spread the
selection relatively uniformly over these categories of derived clauses and their descendants:
axioms, external axioms, assumptions and goals. The queues are organized in two layers. As a
first layer we use the common ratio-based algorithm of alternating between selecting n clauses
from a weight-ordered queue and one clause from the FIFO queue with the derivation order.
As a second layer we use four separate queues based on the derivation history of a clause. Each
queue in the second layer contains the two sub-queues of the first layer.

Implementation

GKC is implemented in C. The data representation machinery is built upon a shared memory
graph database jA HREF="“http://whitedb.org” ; Whitedbj/A; enabling it to solve multiple
different queries in parallel processeses without a need to repeatedly parse or load the large
parsed knowledge base from the disk. An interesting aspect of GKC is the pervasive use of
hash indexes, feature vectors and fingerprints, while no tree indexes are used.

GKC can be obtained from

https://github.com/tammet/gkc/

Expected Competition Performance

We expect GKC to be in the middle of the final ranking for FOF and below the average in
UEQ. We expect GKC to perform well on very large problems.

8.11 iProver 3.9

Konstantin Korovin
University of Manchester, United Kingdom

Architecture

iProver |36l [18] is a theorem prover for quantified first-order logic with theories. iProver
interleaves instantiation calculus Inst-Gen [37] [36] [23] with ordered resolution and superposition
calculi [18]. iProver approximates first-order clauses using propositional abstractions that are
solved using MiniSAT [22] or Z3 [17] and refined using model-guided instantiations. iProver also
implements a general abstraction-refinement framework for under-and over-approximations of
first-order clauses [26, [27]. First-order clauses are exchanged between calculi during the proof
search.

Recent features in iProver include:

24



CASC-J12 Geoff Sutcliffe

Ground joinability and connectedness in the superposition calculus [20].

Support for quantified reasoning with arithmetic and arrays.

AC joinability and AC normalisation [19].

Superposition calculus with simplifications including: demodulation, light normalisation,
subsumption, subsumption resolution and global subsumption. iProver’s simplification
set up [18] is tunable via command line options and generalises common architectures
such as Discount or Otter.

e HOS-ML framework for learning heuristics using combination of hyper-parameter opti-
misation and dynamic clustering together with schedule optimisation using constraint
solving [311, [30]

Strategies

iProver has around 100 options to control the proof search including options for literal se-
lection, passive clause selection, frequency of calling the SAT/SMT solvers, simplifications, and
options for combination of instantiation with resolution and superposition. For the competition
HOS-ML [31] was used to build a multi-core schedule from heuristics learnt over a sample of
FOF problems. Some theories and fragments are recognised such as EPR, UEQ, Horn, groups,
rings and lattices for which options are adapted accordingly.

Implementation

iProver is implemented in OCaml. For the ground reasoning uses MiniSat [22] and Z3 [17].
iProver accepts FOF, TFF and CNF formats. Vampire [38] [50] and E prover [65] are used
for proof-producing clausification of FOF/TFF problems. Vampire is also used for SInE axiom
selection [29] in the LTB division and for theory axioms in the TFA division. iProver is available
at:

https://gitlab.com/korovin/iprover

Expected Competition Performance

iProver is regularly in the top three in FOF, UEQ, TFN, TFA. We expect an improved per-
formance compared to the previous year due to polishing new methods for equational reasoning,
and heuristic optimization.

8.12 LEO-II 1.7.0

Alexander Steen
University of Greifswald, Germany

Architecture

LEO-II [10], the successor of LEO [9], is a higher-order ATP system based on extensional
higher-order resolution. More precisely, LEO-II employs a refinement of extensional higher-
order RUE resolution [8]. LEO-IT is designed to cooperate with specialist systems for fragments
of higher-order logic. By default, LEO-II cooperates with the first-order ATP system E [60].
LEO-II is often too weak to find a refutation amongst the steadily growing set of clauses on its
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own. However, some of the clauses in LEO-II’s search space attain a special status: they are
first-order clauses modulo the application of an appropriate transformation function. Therefore,
LEO-II launches a cooperating first-order ATP system every n iterations of its (standard)
resolution proof search loop (e.g., 10). If the first-order ATP system finds a refutation, it
communicates its success to LEO-II in the standard SZS format. Communication between
LEO-II and the cooperating first-order ATP system uses the TPTP language and standards.

Strategies

LEO-IT employs an adapted “Otter loop”. Moreover, LEO-II uses some basic strategy
scheduling to try different search strategies or flag settings. These search strategies also include
some different relevance filters.

Implementation

LEO-II is implemented in OCaml 4, and its problem representation language is the TPTP
THF language [11]. In fact, the development of LEO-II has largely paralleled the development
of the TPTP THF language and related infrastructure [119]. LEO-II’s parser supports the
TPTP THFO language and also the TPTP languages FOF and CNF.

Unfortunately the LEO-II system still uses only a very simple sequential collaboration model
with first-order ATPs instead of using the more advanced, concurrent and resource-adaptive
OANTS architecture [12] as exploited by its predecessor LEO.

The LEO-II system is distributed under a BSD style license, and it is available from

http://wuw.leoprover.org

Expected Competition Performance

LEO-II is not actively being developed anymore, hence there are no expected improvements
to last year’s CASC results.

8.13 Leo-III 1.7.15

Alexander Steen
University of Greifswald, Germany

Architecture

Leo-III [68], the successor of LEO-II [10], is a higher-order ATP system based on extensional
higher-order paramodulation with inference restrictions using a higher-order term ordering. The
calculus contains dedicated extensionality rules and is augmented with equational simplification
routines that have their intellectual roots in first-order superposition-based theorem proving.
The saturation algorithm is a variant of the given clause loop procedure inspired by the first-
order ATP system E.

Leo-IIT cooperates with external first-order ATPs that are called asynchronously during
proof search; a focus is on cooperation with systems that support typed first-order (TFF) input.
For this year’s CASC E [61] [65] is used as external system. However, cooperation is in general
not limited to first-order systems. Further TPTP/TSTP-compliant external systems (such as
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higher-order ATPs or counter model generators) may be included using simple command-line
arguments. If the saturation procedure loop (or one of the external provers) finds a proof, the
system stops, generates the proof certificate and returns the result.

Strategies

Leo-III comes with several configuration parameters that influence its proof search by apply-
ing different heuristics and/or restricting inferences. These parameters can be chosen manually
by the user on start-up. Leo-III implements a very naive time slicing approach in which at
most three manually fixed parameter configurations are used, one after each other. In practice,
this hardly ever happens and Leo-III will just run with its default parameter setting.

Implementation

Leo-IIT utilizes and instantiates the associated LeoPARD system platform [145] for higher-
order (HO) deduction systems implemented in Scala (currently using Scala 2.13 and running on
a JVM with Java > 8). The prover makes use of LecoPARD’s data structures and implements its
own reasoning logic on top. A hand-crafted parser is provided that supports all TPTP syntax
dialects. It converts its produced concrete syntax tree to an internal TPTP AST data structure
which is then transformed into polymorphically typed lambda terms. As of version 1.1, Leo-III
supports all common TPTP dialects (CNF, FOF, TFF, THF) as well as their polymorphic
variants [15] 85]. Since version 1.6.X (X > 0) Leo-III also accepts non-classical problem input
represented in non-classical TPTP.

The term data structure of Leo-IIT uses a polymorphically typed spine term representation
augmented with explicit substitutions and De Bruijn-indices. Furthermore, terms are perfectly
shared during proof search, permitting constant-time equality checks between alpha-equivalent
terms.

Leo-IIT’s saturation procedure may at any point invoke external reasoning tools. To that
end, Leo-III includes an encoding module which translates (polymorphic) higher-order clauses
to polymorphic and monomorphic typed first-order clauses, whichever is supported by the
external system. While LEO-II relied on cooperation with untyped first-order provers, Leo-II1
exploits the native type support in first-order provers (TFF logic) for removing clutter during
translation and, in turn, higher effectivity of external cooperation.

Leo-IIT is available on GitHub:

https://github.com/leoprover/Leo-III

Expected Competition Performance

Version 1.7.15 is, for all intents and purposes of CASC, equivalent to the version from last
year except that some minor bugs have been fixed, and the support for reasoning in various
quantified non-classical logics (not relevant to CASC) was improved. We do not expect Leo-
III to be strongly competitive against more recent higher-order provers as Leo-III does not
implement several standard features of effective systems (including time slicing and proper
axiom selection).

27



CASC-J12 Geoff Sutcliffe

8.14 Prover9 1109a

Bob Veroff on behalf of William McCune
University of New Mexico, USA

Architecture

Prover9, Version 2009-11A, is a resolution/paramodulation prover for first-order logic with
equality. Its overall architecture is very similar to that of Otter-3.3 [43]. It uses the “given clause
algorithm”, in which not-yet-given clauses are available for rewriting and for other inference
operations (sometimes called the “Otter loop”).

Prover9 has available positive ordered (and nonordered) resolution and paramodulation,
negative ordered (and nonordered) resolution, factoring, positive and negative hyperresolution,
UR-resolution, and demodulation (term rewriting). Terms can be ordered with LPO, RPO, or
KBO. Selection of the “given clause” is by an age-weight ratio.

Proofs can be given at two levels of detail: (1) standard, in which each line of the proof
is a stored clause with detailed justification, and (2) expanded, with a separate line for each
operation. When FOF problems are input, proof of transformation to clauses is not given.

Completeness is not guaranteed, so termination does not indicate satisfiability.

Strategies

Prover9 has available many strategies; the following statements apply to CASC.

Given a problem, Prover9 adjusts its inference rules and strategy according to syntactic
properties of the input clauses such as the presence of equality and non-Horn clauses. Prover9
also does some preprocessing, for example, to eliminate predicates.

For CASC Prover9 uses KBO to order terms for demodulation and for the inference rules,
with a simple rule for determining symbol precedence.

For the FOF problems, a preprocessing step attempts to reduce the problem to independent
subproblems by a miniscope transformation; if the problem reduction succeeds, each subproblem
is clausified and given to the ordinary search procedure; if the problem reduction fails, the
original problem is clausified and given to the search procedure.

Implementation

Prover9 is coded in C, and it uses the LADR libraries. Some of the code descended from EQP
[42]. (LADR has some AC functions, but Prover9 does not use them). Term data structures
are not shared (as they are in Otter). Term indexing is used extensively, with discrimination
tree indexing for finding rewrite rules and subsuming units, FPA/Path indexing for finding
subsumed units, rewritable terms, and resolvable literals. Feature vector indexing [62] is used
for forward and backward nonunit subsumption. Prover9 is available from

http://www.cs.unm.edu/ "mccune/prover9/
Expected Competition Performance

Prover9 is the CASC fixed point, against which progress can be judged. Each year it is
expected do worse than the previous year, relative to the other systems.
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8.15 Twee 2.4.2

Nick Smallbone
Chalmers University of Technology, Sweden

Architecture

Twee 2.4.2 [67] is a theorem prover for unit equality problems based on unfailing comple-
tion [2]. It implements a DISCOUNT loop, where the active set contains rewrite rules (and
unorientable equations) and the passive set contains critical pairs. The basic calculus is not
goal-directed, but Twee implements a transformation which improves goal direction for many
problems.

Twee features ground joinability testing [41] and a connectedness test [I], which together
eliminate many redundant inferences in the presence of unorientable equations. The ground
joinability test performs case splits on the order of variables, in the style of [41], and discharges
individual cases by rewriting modulo a variable ordering.

Strategies

Twee’s strategy is simple and it does not tune its heuristics or strategy based on the input
problem. The term ordering is always KBO; by default, functions are ordered by number of
occurrences and have weight 1. The proof loop repeats the following steps:

e Select and normalise the lowest-scored critical pair, and if it is not redundant, add it as
a rewrite rule to the active set.

e Normalise the active rules with respect to each other.

e Normalise the goal with respect to the active rules.

Each critical pair is scored using a weighted sum of the weight of both of its terms. Terms
are treated as DAGs when computing weights, i.e., duplicate subterms are counted only once
per term.

For CASC, to take advantage of multiple cores, several versions of Twee run in parallel using
different parameters (e.g., with the goal-directed transformation on or off).

Implementation

Twee is written in Haskell. Terms are represented as array-based flatterms for efficient
unification and matching. Rewriting uses a perfect discrimination tree.

The passive set is represented compactly (12 bytes per critical pair) by storing only the
information needed to reconstruct the critical pair, not the critical pair itself. Because of this,
Twee can run for an hour or more without exhausting memory.

Twee uses an LCF-style kernel: all rules in the active set come with a certified proof object
which traces back to the input axioms. When a conjecture is proved, the proof object is
transformed into a human-readable proof. Proof construction does not harm efficiency because
the proof kernel is invoked only when a new rule is accepted. In particular, reasoning about
the passive set does not invoke the kernel.

Twee can be downloaded as open source from:

https://nick8325.github.io/twee/
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Expected Competition Performance

Twee 2.4.2 is the CASC-29 UEQ winner.

8.16 Twee 2.5.0

Nick Smallbone
Chalmers University of Technology, Sweden

Architecture

Twee 2.4.2 [67] is a theorem prover for unit equality problems based on unfailing comple-
tion [2]. It implements a DISCOUNT loop, where the active set contains rewrite rules (and
unorientable equations) and the passive set contains critical pairs. The basic calculus is not
goal-directed, but Twee implements a transformation which improves goal direction for many
problems.

Twee features ground joinability testing [41] and a connectedness test [I], which together
eliminate many redundant inferences in the presence of unorientable equations. The ground
joinability test performs case splits on the order of variables, in the style of [41], and discharges
individual cases by rewriting modulo a variable ordering. New this year is a mode which rewrites
backwards from the goal instead of enumerating critical pairs, but it is still rather rough.

Strategies

Twee’s strategy is simple and it does not tune its heuristics or strategy based on the input
problem. The term ordering is always KBO; by default, functions are ordered by number of
occurrences and have weight 1. The proof loop repeats the following steps:

e Select and normalise the lowest-scored critical pair, and if it is not redundant, add it as
a rewrite rule to the active set.

e Normalise the active rules with respect to each other.

e Normalise the goal with respect to the active rules.

Each critical pair is scored using a weighted sum of the weight of both of its terms. Terms
are treated as DAGs when computing weights, i.e., duplicate subterms are counted only once
per term.

For CASC, to take advantage of multiple cores, several versions of Twee run in parallel using
different parameters (e.g., with the goal-directed transformation on or off).

Implementation

Twee is written in Haskell. Terms are represented as array-based flatterms for efficient
unification and matching. Rewriting uses a perfect discrimination tree.

The passive set is represented compactly (12 bytes per critical pair) by storing only the
information needed to reconstruct the critical pair, not the critical pair itself. Because of this,
Twee can run for an hour or more without exhausting memory.

Twee uses an LCF-style kernel: all rules in the active set come with a certified proof object
which traces back to the input axioms. When a conjecture is proved, the proof object is
transformed into a human-readable proof. Proof construction does not harm efficiency because
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the proof kernel is invoked only when a new rule is accepted. In particular, reasoning about
the passive set does not invoke the kernel.
Twee can be downloaded as open source from:

https://nick8325.github.io/twee/

Expected Competition Performance

Similar to last year, but we hope the new goal-directed mode might solve a few interesting
problems.

8.17 Vampire 4.8

Michael Rawson
TU Wien, Austria

There have been a number of changes and improvements since Vampire 4.7, although it
is still the same beast. Most significant from a competition point of view are long-awaited
refreshed strategy schedules. As a result, several features present in previous competitions will
now come into full force, including new rules for the evaluation and simplification of theory
literals. A large number of completely new features and improvements also landed this year:
highlights include a significant refactoring of the substitution tree implementation, the arrival
of encompassment demodulation to Vampire, and support for parametric datatypes.

Vampire’s higher-order support has also been re-implemented from the ground up. The new
implementation is still at an early stage and its theoretical underpinnings are being developed.
There is currently no documentation of either.

Architecture

Vampire [38] is an automatic theorem prover for first-order logic with extensions to theory-
reasoning and higher-order logic. Vampire implements the calculi of ordered binary resolution,
and superposition for handling equality. It also implements the Inst-gen calculus and a MACE-
style finite model builder [51]. Splitting in resolution-based proof search is controlled by the
AVATAR architecture which uses a SAT or SMT solver to make splitting decisions [140} 4§].
A number of standard redundancy criteria and simplification techniques are used for pruning
the search space: subsumption, tautology deletion, subsumption resolution and rewriting by
ordered unit equalities. The reduction ordering is the Knuth-Bendix Ordering. Substitution
tree and code tree indexes are used to implement all major operations on sets of terms, literals
and clauses. Internally, Vampire works only with clausal normal form. Problems in the full first-
order logic syntax are clausified during preprocessing [52]. Vampire implements many useful
preprocessing transformations including the SinE axiom selection algorithm. When a theorem
is proved, the system produces a verifiable proof, which validates both the clausification phase
and the refutation of the CNF.

Strategies

Vampire 4.8 provides a very large number of options for strategy selection. The most
important ones are:

e Choices of saturation algorithm:
— Limited Resource Strategy [58]
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DISCOUNT loop

Otter loop

Instantiation using the Inst-Gen calculus

MACE-style finite model building with sort inference

Splitting via AVATAR [140]

A variety of optional simplifications.

Parameterized reduction orderings.

A number of built-in literal selection functions and different modes of comparing literals
[28].

Age-weight ratio that specifies how strongly lighter clauses are preferred for inference
selection. This has been extended with a layered clause selection approach [25].
Set-of-support strategy with extensions for theory reasoning.

For theory-reasoning:
— Ground equational reasoning via congruence closure.

— Addition of theory axioms and evaluation of interpreted functions [49].

— Use of Z3 with AVATAR to restrict search to ground-theory-consistent splitting
branches [48].

— Specialised theory instantiation and unification [53].

— Extensionality resolution with detection of extensionality axioms

The schedule for the new HOL implementation was developed using Snake, a strategy schedule
construction tool described in more detail last year. The Snake schedule this year fully embraces
Vampire randomisation support [71] and, in particular, every strategy independently shuffles
the input problem, to nullify (in expectation) the effect of problem scrambling done by the
organisers.

Implementation

Vampire 4.8 is implemented in C++. It makes use of fixed versions of Minisat and Z3. See
the website for more information and access to the GitHub repository.

Expected Competition Performance

Vampire 4.8 is the CASC-29 THF, TFA, TFN, and FOF winner.

8.18 Vampire 4.9

Michael Rawson
TU Wien, Austria

There have been a number of improvements since Vampire 4.8, although it is still the same
beast. For the first time this year, Vampire’s schedules were constructed mostly using the
Snake strategy selection tool, although a return of the traditional Spider is still possible in
future. Improvements from the past year include:

e A runtime-specialised version of unidirectional term ordering checks

e Improvements to unification with abstraction

e Surprising improvements to Vampire’s basic routines such as renaming and unification
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A simple interactive mode

e Revitalisation of code trees

e Experimental features not yet fully understood, mostly aimed at unit-equational reason-
ing.

e Portability: Vampire is much more standards-compliant and portable than previously,

with much-reduced dependence on platform-specific APIs and hardware architectures,

aided by C++17

Vampire’s higher-order support remains very similar to last year, although a re-implementation
intended for mainline Vampire is already underway.

Architecture

Vampire [3§] is an automatic theorem prover for first-order logic with extensions to theory-
reasoning and higher-order logic. Vampire implements the calculi of ordered binary resolution,
and superposition for handling equality. It also implements a MACE-style finite model builder
for finding finite counter-examples [51]. Splitting in resolution-based proof search is controlled
by the AVATAR architecture which uses a SAT or SMT solver to make splitting decisions
[140, 48]. A number of standard redundancy criteria and simplification techniques are used
for pruning the search space: subsumption, tautology deletion, subsumption resolution and
rewriting by ordered unit equalities. The reduction ordering is the Knuth-Bendix Ordering.
Substitution tree and code tree indexes are used to implement all major operations on sets of
terms, literals and clauses. Internally, Vampire works only with clausal normal form. Problems
in the full first-order logic syntax are clausified during preprocessing [52]. Vampire implements
many useful preprocessing transformations including the SInE axiom selection algorithm. When
a theorem is proved, the system produces a verifiable proof, which validates both the clausifi-
cation phase and the refutation of the CNF.

Strategies

Vampire 4.9 provides a very large number of options for strategy selection. The most
important ones are:
e Choices of saturation algorithm:
— Limited Resource Strategy [58]
— DISCOUNT loop
— Otter loop
— MACE-style finite model building with sort inference
Splitting via AVATAR [140]
A variety of optional simplifications.
Parameterized reduction orderings.

A number of built-in literal selection functions and different modes of comparing literals
[28].

Age-weight ratio that specifies how strongly lighter clauses are preferred for inference
selection. This has been extended with a layered clause selection approach [25].
Set-of-support strategy with extensions for theory reasoning.

For theory-reasoning:
— Ground equational reasoning via congruence closure.
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— Addition of theory axioms and evaluation of interpreted functions [49].

— Use of Z3 with AVATAR to restrict search to ground-theory-consistent splitting
branches [48].

— Specialised theory instantiation and unification [53].

— Extensionality resolution with detection of extensionality axioms

Implementation

Vampire 4.9 is implemented in C4++. It makes use of fixed versions of Minisat and Z3. See
the GitHub repository and associated wiki for more information.

Expected Competition Performance

Vampire 4.9 should be an improvement on the previous version. A reasonably strong per-
formance across all divisions is therefore expected. In the higher-order divisions, performance
should be the same as last year.

8.19 Zipperposition 2.1.9999

Jasmin Blanchette
Ludwig-Maximilians-Universitdt Miinchen, Germany

Architecture

Zipperposition is a superposition-based theorem prover for typed first-order logic with equal-
ity and for higher-order logic. It is a pragmatic implementation of a complete calculus for full
higher-order logic [7]. It features a number of extensions that include polymorphic types, user-
defined rewriting on terms and formulas (“deduction modulo theories”), a lightweight variant
of AVATAR for case splitting [21], and Boolean reasoning [144]. The core architecture of the
prover is based on saturation with an extensible set of rules for inferences and simplifications.
Zipperposition uses a full higher-order unification algorithm that enables efficient integration
of procedures for decidable fragments of higher-order unification [142]. The initial calculus
and main loop were imitations of an earlier version of E [61]. With the implementation of
higher-order superposition, the main loop had to be adapted to deal with possibly infinite sets
of unifiers [141].

Strategies

The system uses various strategies in a portfolio. The strategies are run in parallel, making
use of all CPU cores available. We designed the portfolio of strategies by manual inspection
of TPTP problems. Zipperposition’s heuristics are inspired by efficient heuristics used in E.
Various calculus extensions are used by the strategies [141]. The portfolio mode distinguishes
between first-order and higher-order problems. If the problem is first-order, all higher-order
prover features are turned off. In particular, the prover uses standard first-order superposition
calculus and disables collaboration with the backend prover (described below). Other than
that, the portfolio is static and does not depend on the syntactic properties of the problem.
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Implementation

The prover is implemented in OCaml. Term indexing is done using fingerprints for unifi-
cation, perfect discrimination trees for rewriting , and feature vectors for subsumption. Some
inference rules such as contextual literal cutting make heavy use of subsumption. For higher-
order problems, some strategies use the E prover as an end-game backend prover.

Zipperposition’s code can be found at

https://github.com/sneeuwballen/zipperposition

and is entirely free software (BSD-licensed).

Zipperposition can also output graphic proofs using graphviz. Some tools to perform type
inference and clausification for typed formulas are also provided, as well as a separate library
for dealing with terms and formulas [16].

Expected Competition Performance

The prover is expected to perform well on THF, about as well as last year’s version. We
expect to beat E.
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9 Conclusion

The 12th IJCAR ATP System Competition was the twenty-ninth large scale competition for
classical logic ATP systems. The organizers believe that CASC fulfills its main motivations:
evaluation of relative capabilities of ATP systems, stimulation of research, motivation for im-
proving implementations, and providing an exciting event. Through the continuity of the event
and consistency in the reporting of the results, performance comparisons with previous and
future years are easily possible. The competition provides exposure for system builders both
within and outside of the community, and provides an overview of the implementation state of
running, fully automatic, classical logic ATP systems.
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