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Abstract

The CADE ATP System Competition (CASC) evaluates the performance of sound,
fully automatic, classical logic, ATP systems. The evaluation is in terms of the number of
problems solved, the number of acceptable proofs and models produced, and the average
runtime for problems solved, in the context of a bounded number of eligible problems
chosen from the TPTP problem library and other useful sources of test problems, and
specified time limits on solution attempts. The 10th IJCAR ATP System Competition
(CASC-J10) was held on 2th July 2020. The design of the competition and its rules, and
information regarding the competing systems, are provided in this report.

1 Introduction

The CADE and IJCAR conferences are the major forum for the presentation of new research
in all aspects of automated deduction. In order to stimulate ATP research and system de-
velopment, and to expose ATP systems within and beyond the ATP community, the CADE
ATP System Competition (CASC) is held at each CADE and IJCAR conference. CASC-J10
was held on 2nd July 2020, as part of the 10th International Joint Conference on Automated
Reasoning (IJCAR 2020)1, Online, Earth. It was the twenty-fifth competition in the CASC
series [139, 145, 142, 95, 97, 138, 136, 137, 102, 104, 106, 108, 111, 113, 115, 117, 119, 121, 123,
144, 125, 127, 130, 132].

CASC evaluates the performance of sound, fully automatic, classical logic, ATP systems.
The evaluation is in terms of:

• the number of problems solved,

• the number of acceptable proofs and models produced, and

• the average runtime for problems solved;

in the context of:

• a bounded number of eligible problems, chosen from the TPTP problem library [128] and
other useful sources of test problems, and

• specified time limits on solution attempts.

Twenty-five ATP system versions, listed in Table 1 and 2, entered into the various competi-
tion and demonstration divisions. The winners of the CASC-27 (the previous CASC) divisions
were automatically entered into the corresponding demonstration divisions, to provide bench-
marks against which progress can be judged (the competition archive provides access to the
systems’ executables and source code).

The design and procedures of this CASC evolved from those of previous CASCs [139, 140,
135, 141, 93, 94, 96, 98, 99, 100, 101, 103, 105, 107, 110, 112, 114, 116, 118, 120, 122, 124, 126,
129, 131]. Important changes for CASC-J10 were:

1CADE was a constituent conference of IJCAR, hence CASC-“J10”.
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• All divisions used a wall clock time limit, to promote use of all the cores on the CPU.

• The EPR division was placed on hiatus.

• A new variant of the SotAC measure was adopted, to allow comparison of SotAC values
between CASC editions.

The competition organizer was Geoff Sutcliffe. CASC is overseen by a panel of knowledgeable
researchers who are not participating in the event. The CASC-J10 panel members were Pascal
Fontaine, Andre Platzer, and Christoph Weidenbach. The competition was run on computers
provided by StarExec at the University of Miami. The CASC-J10 web site provides access to
resources used before, during, and after the event: http://www.tptp.org/CASC/J10

The CASC rules, specifications, and deadlines are absolute. Only the panel has the right
to make exceptions. It is assumed that all entrants have read the web pages related to the
competition, and have complied with the competition rules. Non-compliance with the rules can
lead to disqualification. A “catch-all” rule is used to deal with any unforeseen circumstances:
No cheating is allowed. The panel is allowed to disqualify entrants due to unfairness, and to
adjust the competition rules in case of misuse.

2 Divisions

CASC is divided into divisions according to problem and system characteristics. There are
competition divisions in which systems are explicitly ranked, and a demonstration division in
which systems demonstrate their abilities without being ranked. Some divisions are further
divided into problem categories, which makes it possible to analyse, at a more fine grained
level, which systems work well for what types of problems. The problem categories have no
effect on the competition rankings, which are made at only the division level.

2.1 The Competition Divisions

The competition divisions are open to ATP systems that meet the required system properties,
described in Section 6.1. Each division uses problems that have certain logical, language, and
syntactic characteristics, so that the ATP systems that compete in the division are, in principle,
able to attempt all the problems in the division.

The THF division: Typed Higher-order Form theorems (axioms with a provable conjecture).
The THF division has two problem categories:

• The TNE category: THF with No Equality

• The TEQ category: THF with EQuality

The TFA division: Typed First-order with Arithmetic theorems (axioms with a provable con-
jecture). The TFA division has two problem categories:

• The TFI category: TFA with only Integer arithmetic

• The TFE category: TFA with only rEal arithmetic

The FOF division: First-Order Form theorems (axioms with a provable conjecture). The FOF
division has two problem categories:

• The FNE category: FOF with No Equality

• The FEQ category: FOF with EQuality

4
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The FNT division: First-order form Non-Theorems (axioms with a countersatisfiable conjec-
ture, and satisfiable axiom sets). The FNT division has two problem categories:

• The FNN category: FNT with No equality

• The FNQ category: FNT with eQuality

The UEQ division: Unit EQuality clause normal form theorems (unsatisfiable clause sets).

The LTB division: Theorems (axioms with a provable conjecture) from Large Theories, pre-
sented in Batches. A large theory has many functions and predicates, and many axioms of
which typically only a few are required for the proof of a theorem. The problems in a batch
are given to an ATP system all at once, and typically have a common core set of axioms. The
batch presentation allows the ATP systems to load and preprocess the common core set of ax-
ioms just once, and to share logical and control results between proof searches. Each problem
category might be accompanied by a set of training problems and their solutions, taken from
the same source as the competition problems. The training data can be used for ATP system
tuning during (typically at the start of) the competition. In CASC-J10 the LTB division had
one problem category:

• The HL4 category: Problems exported from HOL4 [91].

Eight versions of each problem were provided - two FOF versions, two TF0 versions, one TF1
version, two TH0 versions, and one TH1 version. Systems could attempt as many of the
versions as they want, in any order including in parallel, and a solution to any version counted
as a solution to the problem. Some of the HL4 problems had less than 100 axioms, and some
had over 100000 axioms.

Section 3.2 explains what problems are eligible for use in each division and category. Sec-
tion 4 explains how the systems are ranked in each division.

2.2 The Demonstration Division

ATP systems that cannot run in the competition divisions for any reason (e.g., the system
requires special hardware, the system is a previous winner, or the entrant is an organizer)
can be entered into the demonstration division. Demonstration division systems can run on
the competition computers, or the computers can be supplied by the entrant. Computers
supplied by the entrant may be brought to CASC, or may be accessed via the internet. The
demonstration division results are presented along with the competition divisions’ results, but
might not be comparable with those results. The systems are not ranked and no trophies or
prizes are awarded.

3 Infrastructure

3.1 Computers

The competition computers had:
• Two octa-core Intel(R) Xeon(R) E5-2667, 3.20GHz CPUs

• 256GB memory

• The CentOS Linux release 7.4.1708 operating system, kernel 3.10.0-957.12.2.el7.x86 64.

One ATP system runs on one CPU at a time, with access to half (128GB) the memory.
Systems can use all the cores on the CPU, which is advantageous in the divisions where a wall
clock time limit was used.

5
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3.2 Problems

3.2.1 Problem Selection

The problems for the THF, TFA, FOF, FNT, and UEQ divisions were taken from the TPTP
Problem Library [128], version v7.4.0. The TPTP version used for CASC is released after
the competition has started, so that new problems have not been seen by the entrants. The
problems have to meet certain criteria to be eligible for selection. The problems used are
randomly selected from the eligible problems based on a seed supplied by the competition
panel:

• The TPTP tags problems that designed specifically to be suited or ill-suited to some
ATP system, calculus, or control strategy as biased, and they are excluded from the
competition.

• The problems are syntactically non-propositional.

• The TPTP uses system performance data in the Thousands of Solutions from Theorem
Provers (TSTP) solution library to compute problem difficulty ratings in the range 0.00
(easy) to 1.00 (unsolved) [143]. Difficult problems with a rating in the range 0.21 to 0.99
are eligible. Problems of lesser and greater ratings might also be eligible in some divisions
if there are not enough problems with ratings in that range. Systems can be submitted
before the competition so that their performance data is used for computing the problem
ratings.

• The selection is constrained so that no division or category contains an excessive number
of very similar problems [95].

• The selection is biased to select problems that are new in the TPTP version used, until 50%
of the problems in each problem category have been selected, after which random selection
(from old and new problems) continues. The number of new problems used depends on
how many new problems are eligible and the limitation on very similar problems.

The problems for the LTB division are taken from various sources, with each problem
category being based on one source. Entrants are expected to honestly not use publicly available
problem sets for tuning before the competition. The process for selecting problems depends on
the problem source.

3.2.2 Number of Problems

In the TPTP-based divisions, the minimal numbers of problems that must be used in each
division and category to ensure sufficient confidence in the competition results are determined
from the numbers of eligible problems in each division and category [31] (the competition
organizers have to ensure that there are sufficient computers available to run the ATP systems on
this minimal number of problems). The minimal numbers of problems are used in determining
the time limit imposed on each solution attempt - see Section 3.3. The numbers of problems
to be used in each division of the competition are determined from the number of computers
available, the time allocated to the competition, the number of ATP systems to be run on
the competition computers over the divisions, and the time limit impoased on each solution
attempt, according to the following relationship:

NumberOfProblems =
NumberOfComputers ∗ TimeAllocated

NumberOfATPSystems ∗ TimeLimit

It is a lower bound on the number of problems because it assumes that every system uses all
of the time limit for each problem. Since some solution attempts succeed before the time limit

6
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is reached, more problems can be used. The numbers of problems used in the categories in the
various divisions are (roughly) proportional to the numbers of eligible problems, after taking
into account the limitation on very similar problems, determined according to the judgement
of the competition organizers.

In the LTB division the number of problems in each problem category is determined by the
number of problems in the corresponding problem set. In CASC-J10 the HL4 problem category
had 10000 problems (with eight versions of each problem).

3.2.3 Problem Preparation

The problems are given to the ATP systems in TPTP format, with include directives. In order
to ensure that no system receives an advantage or disadvantage due to the specific presentation
of the problems in the TPTP, the problems in the TPTP-based divisions are obfuscated by:

• stripping out all comment lines, including the problem header

• randomly reordering the formulae/clauses (the include directives are left before the for-
mulae, type declarations and definitions are kept before the symbols’ uses)

• randomly swapping the arguments of associative connectives, and randomly reversing
implications

• randomly reversing equalities

In the In the LTB division the formulae are not obfuscated, thus allowing the ATP systems
to take advantage of natural structure that occurs in the problems.

In the TPTP-based divisions the problems are given in increasing order of TPTP difficulty
rating. In the LTB division the problems in each batch are given in their natural order in the
problem source.

3.2.4 Batch Specification Files

The problems for each problem category of the LTB division are listed in a batch specification
file, containing containing global data lines and one or more batch specifications. The global
data lines are:

• A problem category line of the form
division.category LTB.category mnemonic

• The name of a .tgz file (relative to the directory holding the batch specification file) that
contains training data in the form of problems in TPTP format and one or more solutions
to each problem in TSTP format, in a line of the form

division.category.training data tgz file name
The .tgz file expands in place to three directories: Axioms, Problems, and Solutions.
Axioms contains all the axiom files that are used in the training and competition problems.
Problems contains the training problems. Solutions contains a subdirectory for each of
the Problems, containing TPTP format solutions to the problem. The language of a
solution might not be the same as the language of the problem, e.g., a proof to a THF
problem might be written in FOF, or the proof of a TFF problem might be written in
THF.

7



CASC-J10 Geoff Sutcliffe

Each batch specification consists of:

• A header line % SZS start BatchConfiguration

• A specification of whether or not the problems in the batch must be attempted in order
is given, in a line of the form

execution.order ordered/unordered
If the batch is ordered the ATP systems may not start any attempt on a problem, includ-
ing reading the problem file, before ending the attempt on the preceding problem. For
CASC-J10 it was

execution.order unordered

• A specification of what output is required from the ATP systems for each problem, in a
line of the form

output.required space separated list
where the available list values are the SZS values Assurance, Proof, Model, and Answer.
For CASC-J10 it was

output.required Proof.

• The wall clock time limit per problem, in a line of the form
limit.time.problem.wc limit in seconds

A value of zero indicates no per-problem limit. For CASC-J10 it was
limit.time.problem.wc 0

• The overall wall clock time limit for the batch, in a line of the form
limit.time.overall.wc limit in seconds

• A terminator line % SZS end BatchConfiguration

• A header line % SZS start BatchIncludes

• include directives that are used in every problem. All the problems in the batch have
these include directives, and can also have other include directives that are not listed
here. For CASC-J10, see the additional notes below.

• A terminator line % SZS end BatchIncludes

• A header line % SZS start BatchProblems

• Pairs of problem file names (relative to the directory holding the batch specification file),
and output file names where the output for the problem must be written. The output files
must be written in the directory specified as the second argument to the starexec run

script (the first argument is the name of the batch specification file). For CASC-J10, see
the additional notes below.

• A terminator line % SZS end BatchProblems

Additional Notes for CASC-J10

• In the BatchProblems section, the multiple versions of each problem are specified using
UNIX * globbing, e.g., HL400001*.p. The versions of each problem have extensions as
follows: the first FOF version uses +4, the second FOF version uses +5, the first TF0
version uses 4, the second TF0 version uses 5, the only TF1 version uses 7, the first
TH0 version uses ^4, the second TH0 version uses ^5, and the only TH1 version uses ^7.

• Proof output must identify which version of the problem was solved - see Section 6.1. The
proof may not have irrelevant output (e.g., from other threads running attempts on other
versions of the problem) interleaved in the proof.

• In the BatchIncludes section (not in problem files), multiple versions of included axiom
files may be specified using UNIX * globbing, e.g., include(’Axioms/HL4001*.ax’) could
refer to all of HL4002+4.ax, HL4002 4.ax, HL4002^4.ax, HL4002+5.ax, HL4002 5.ax,
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HL4002^5.ax, HL4002 7.ax, HL4002^7.ax. For a given problem, systems should use only
the axiom files whose version matches that of the problem file (there may be none), e.g.,
if the problem version is +4 then use only the axiom files with the version +4. Using any
other versions could lead to weird results.

3.3 Resource Limits

In the TPTP-based divisions, a wall clock time limit was imposed for each problem. The mini-
mal time limit for each problem is 120s. The maximal time limit for each problem is determined
using the relationship used for determining the number of problems, with the minimal num-
ber of problems as the NumberOfProblems. The time limit is chosen as a reasonable value
within the range allowed, and is announced at the competition. There were no CPU time limits
(i.e., using all cores made sense). An additional memory limit is imposed, depending on the
computers’ memory.

In the LTB division, wall clock time limits are imposed. For each batch there might be a
wall clock time limit for each problem, provided in the configuration section at the start of each
batch. If there is a wall clock time limit for each problem, the minimal limit for each problem
is 15s, and the maximal limit for each problem is 90s. For each batch there is an overall wall
clock time limit, provided in the configuration section at the start of each batch. The overall
limit is proportional to the number of problems in the batch, e.g., (but not necessarily) the
batch’s per-problem time limit multiplied by the number of problems in the batch. Time spent
before starting the first problem of a batch (e.g., preloading and analysing the batch axioms),
and times spent between the end of an attempt on a problem and the starting of the next (e.g.,
learning from a proof just found), are not part of the times taken on the individual problems,
but are part of the overall time taken. There are no CPU time limits.

4 System Evaluation

For each ATP system, for each problem, four items of data are recorded: whether or not the
problem was solved, the CPU time taken, the wall clock time taken, and whether or not a proof
or model was output.

The systems are ranked in the competition divisions according to the number of problems
solved with an acceptable proof/model output. Ties are broken according to the average wall
clock time taken over problems solved. Trophies are awarded to the competition divisions’
winners.

The competition panel decides whether or not the systems’ proofs and models are “accept-
able”. The criteria include:

• Derivations must be complete, starting at formulae from the problem, and ending at the
conjecture (for axiomatic proofs) or a false formula (for proofs by contradiction, e.g.,
CNF refutations).

• For proofs that use translations from one form to another, e.g., translation of FOF prob-
lems to CNF, the translations must be adequately documented.

• Derivations must show only relevant inference steps.

• Inference steps must document the parent formulae, the inference rule used, and the
inferred formula.

• Inference steps must be reasonably fine-grained.

• An unsatisfiable set of ground instances of clauses is acceptable for establishing the un-
satisfiability of a set of clauses.
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• Models must be complete, documenting the domain, function maps, and predicate maps.
The domain, function maps, and predicate maps may be specified by explicit ground lists
(of mappings), or by any clear, terminating algorithm.

In addition to the ranking criteria, other measures are made and presented in the results:

• The state-of-the-art contribution (SotAC) quantifies the unique abilities of each system.
For each problem solved by a system, its SotAC for the problem is

1 − FractionOfSystemsThatSolvedTheProblem

and a system’s overall SotAC is its average for the problems it solves but which are not
solved by all the systems.

• The core usage is the average of the ratios of CPU time to wall clock time used, over
the problems solved. This measures the extent to which the systems take advantage of
multiple cores.

• The efficiency measure combines the number of problems solved with the time taken.
It is the average of the inverses of the times taken for problems solved, multiplied by
the fraction of problems solved. This can be interpreted intuitively as the average of
the solution rates for problems solved, multiplied by the fraction of problems solved.
Efficiency is computed for both CPU time and wall clock time, to measure how efficiently
the systems use one core and how efficiently systems use multiple cores, respectively.

At some time after the competition, all high ranking systems in each division are tested
over the entire TPTP. This provides a final check for soundness (see Section 6.1 regarding
soundness checking before the competition). If a system is found to be unsound during or after
the competition, but before the competition report is published, and it cannot be shown that
the unsoundness did not manifest itself in the competition, then the system is retrospectively
disqualified. At some time after the competition, the proofs and models from the winners (of
divisions ranked by the numbers of proofs/models output) are checked by the panel. If any
of the proofs or models are unacceptable, i.e., they are significantly worse than the samples
provided, then that system is retrospectively disqualified. All disqualifications are explained in
the competition report.

5 System Entry

To be entered into CASC, systems must be registered using the CASC system registration
form, by the registration deadline. For each system an entrant must be nominated to handle all
issues (e.g., installation and execution difficulties) arising before and during the competition.
The nominated entrant must formally register for CASC. It is not necessary for entrants to
physically attend the competition.

Systems can be entered at only the division level, and can be entered into more than one
division. A system that is not entered into a competition division is assumed to perform worse
than the entered systems, for that type of problem - wimping out is not an option. Entering
many similar versions of the same system is deprecated, and entrants may be required to limit
the number of system versions that they enter. Systems that rely essentially on running other
ATP systems without adding value are deprecated; the competition panel may disallow or move
such systems to the demonstration division.

The division winners from the previous CASC are automatically entered into their demon-
stration divisions, to provide benchmarks against which progress can be judged. Prover9 1109a
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is automatically entered into the FOF division, to provide a fixed-point against which progress
can be judged.

5.1 System Descriptions

A system description has to be provided for each ATP system entered, using the HTML schema
supplied on the CASC web site. (See Section 7 for these descriptions.) The schema has the
following sections:

• Architecture. This section introduces the ATP system, and describes the calculus and
inference rules used.

• Strategies. This section describes the search strategies used, why they are effective, and
how they are selected for given problems. Any strategy tuning that is based on specific
problems’ characteristics must be clearly described (and justified in light of the tuning
restrictions described in Section 6.1).

• Implementation. This section describes the implementation of the ATP system, including
the programming language used, important internal data structures, and any special code
libraries used. The availability of the system is also given here.

• Expected competition performance. This section makes some predictions about the per-
formance of the ATP system in each of the divisions and categories in which it is com-
peting.

• References.

The system description has to be emailed to the competition organizers by the system
description deadline. The system descriptions form part of the competition proceedings.

5.2 Sample Solutions

For systems in the divisions that require proof/model output, representative sample solutions
must be emailed to the competition organizers by the sample solutions deadline. Use of the
TPTP format for proofs and finite interpretations is encouraged. The competition panel decides
whether or not proofs and models are acceptable.

Proof/model samples are required as follows:

• THF: SET014^4

• TFA: DAT013=1

• FOF: SEU140+2

• FNT: NLP042+1 and SWV017+1

• UEQ: BOO001-1

• LTB: For CASC-J10, all of the variants of HL400001 that the system can attempt.

An explanation must be provided for any non-obvious features.

6 System Requirements

6.1 System Properties

Entrants must ensure that their systems execute in the competition environment, and have
the following properties. Entrants are advised to finalize their installation packages and check
these properties well in advance of the system delivery deadline. This gives the competition
organizers time to help resolve any difficulties encountered.
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Execution, Soundness, and Completeness

• Systems must be fully automatic, i.e., all command line switches have to be the same for
all problems in each division.

• Systems’ performance must be reproducible by running the system again.

• Systems must be sound. At some time before the competition all the systems in the com-
petition divisions are tested for soundness. Non-theorems are submitted to the systems in
the THF, TFA, FOF, EPR, UEQ, and LTB divisions, and theorems are submitted to the
systems in the FNT and EPR divisions. Finding a proof of a non-theorem or a disproof
of a theorem indicates unsoundness. If a system fails the soundness testing it must be
repaired by the unsoundness repair deadline or be withdrawn. For systems running on
entrant supplied computers in the demonstration division, the entrant must perform the
soundness testing and report the results to the competition organizers.

• Systems do not have to be complete in any sense, including calculus, search control,
implementation, or resource requirements.

• All techniques used must be general purpose, and expected to extend usefully to new
unseen problems. The precomputation and storage of information about individual prob-
lems and axiom sets is not allowed. Strategies and strategy selection based on individual
problems is not allowed. If machine learning procedures are used, the learning must ensure
that sufficient generalization is obtained so that no there is no specialization to individual
problems or their solutions.

• All techniques used must be general purpose, and expected to extend usefully to new
unseen problems. The precomputation and storage of information about individual prob-
lems that might appear in the competition or their solutions is not allowed. (It’s OK to
store information about LTB training problems.) Strategies and strategy selection based
on individual problems or their solutions are not allowed. If machine learning procedures
are used to tune a system, the learning must ensure that sufficient generalization is ob-
tained so that no there is no specialization to individual problems or their solutions. The
system description must explain any such tuning or training that has been done. The
competition panel may disqualify any system that is deemed to be problem specific rather
than general purpose.

Output

• In all divisions except LTB all solution output must be to stdout. In the LTB division
all solution output must be to the named output file for each problem, in the directory
specified as the second argument to the starexec run script. If multiple attempts are
made on a problem in an unordered batch, each successive output file must overwrite the
previous one.

• In the LTB division the systems must print SZS notification lines to stdout when starting
and ending work on a problem (including any cleanup work, such as deleting temporary
files). For example

% SZS status Started for CSR075+2.p

... (system churns away, result and solution output to file)

% SZS status GaveUp for CSR075+2.p

% SZS status Ended for CSR075+2.p

... and later in another attempt on that problem ...
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% SZS status Started for CSR075+2.p

... (system churns away, result and solution appended to file)

% SZS status Theorem for CSR075+2.p

% SZS status Ended for CSR075+2.p

• For each problem, the system must output a distinguished string indicating what solution
has been found or that no conclusion has been reached. Systems must use the SZS
ontology and standards [109] for this. For example

SZS status Theorem for SYN075+1

or

SZS status GaveUp for SYN075+1

In the LTB division this line must be the last line output before the ending notification
line. Tthe line must also be output to the output file.

• When outputting proofs/models, the start and end of the proof/model must be delimited
by distinguished strings. Systems must use the SZS ontology and standards for this. For
example

SZS output start CNFRefutation for SYN075-1.p

...

SZS output end CNFRefutation for SYN075-1.p

The string specifying the problem status must be output before the start of a proof/model.
Use of the TPTP format for proofs and finite interpretations [134] is encouraged.

Resource Usage

• Systems must be interruptible by a SIGXCPU signal, so that CPU time limits can be im-
posed, and interruptible by a SIGALRM signal, so that wall clock time limits can be imposed.
For systems that create multiple processes, the signal is sent first to the process at the top
of the hierarchy, then one second later to all processes in the hierarchy. The default action
on receiving these signals is to exit (thus complying with the time limit, as required), but
systems may catch the signals and exit of their own accord. If a system runs past a time
limit this is noticed in the timing data, and the system is considered to have not solved
that problem.

• If a system terminates of its own accord, it may not leave any temporary or intermediate
output files. If a system is terminated by a SIGXCPU or SIGALRM, it may not leave any
temporary or intermediate files anywhere other than in /tmp.

• For practical reasons excessive output from an ATP system is not allowed. A limit,
dependent on the disk space available, is imposed on the amount of output that can be
produced.

6.2 System Delivery

Entrants must email a StarExec installation package to the competition organizers by the system
delivery deadline. The installation package must be a .tgz file containing only the components
necessary for running the system (i.e., not including source code, etc.). The entrants must also
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email a .tgz file containing the source code and any files required for building the StarExec
installation package to the competition organizers by the system delivery deadline.

For systems running on entrant supplied computers in the demonstration division, entrants
must email a .tgz file containing the source code and any files required for building the exe-
cutable system to the competition organizers by the system delivery deadline.

After the competition all competition division systems’ source code is made publicly avail-
able on the CASC web site. In the demonstration division, the entrant specifies whether or not
the source code is placed on the CASC web site. An open source license is encouraged.

6.3 System Execution

Execution of the ATP systems is controlled by StarExec. The jobs are queued onto the com-
puters so that each CPU is running one job at a time. All attempts at the Nth problems in all
the divisions and categories are started before any attempts at the (N+1)th problems.

A system has solved a problem iff it outputs its termination string within the time limit,
and a system has produced a proof/model iff it outputs its end-of-proof/model string within
the time limit. The result and timing data is used to generate an HTML file, and a web browser
is used to display the results.

The execution of the demonstration division systems is supervised by their entrants.

7 The ATP Systems

These system descriptions were written by the entrants.

7.1 ATPBoost 1.0

Bartosz Piotrowski
University of Warsaw, Poland

Architecture

ATPBoost 1.0 [69], is a metasystem for ATP in large theories relying on consistent naming
of symbols and formulae. It learns premise selection from examples of successful proofs using
several machine learning methods (k-nearest neighbors, gradient boosted trees, recurrent neural
networks, and graph neural networks). The underlying deductive system is (currently) E prover.
The system addresses the fact of a multiplicity of possible proofs. The learning process is
reinforced by a feedback loop between the learners and the prover during which new training
proofs may be found and wrong classifications of premises may be corrected. The version
for CASC J10 will (likely) use non-neural machine learning methods only (due to time and
hardware limitations, as the neural methods are time-consuming and often require GPU for
efficient training).

Strategies

The main strategy of ATPBoost 1.0 for learning premise selection is to run multiple iterations
of the learning-proving feedback loop. During the learning part, machine learning models are
trained on the available proofs to select relevant axioms. During the proving part, the prover
is run multiple times with axioms advised by the trained models. Newly found proofs give
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a feedback signal to the learners: highly-ranked premises which were not used in any of the
proofs are returned as negative training examples, and new positive examples are extracted
from the new proofs. The machine learning models trained in such a way provide premise-
selection advice for ATP attempts for new conjectures. For each conjecture, the prover is run
with several axiom limits.

Implementation

The metasystem is implemented in Python. It uses several machine learning libraries (XG-
Boost, OpenNMT, TensorFlow, Scikit-learn).

ATPBoost is available from

https://github.com/BartoszPiotrowski/ATPboost

Expected Competition Performance

ATPBoost is most useful when the number of available axioms is very large but the prob-
lems itself are not very difficult provided relevant axioms are selected. ATPBoost has good
performance on the MPTP Challenge. The performance on the type of problems in the current
LTB division is unknown!

7.2 CSE 1.3

Feng Cao
Southwest Jiaotong University, China

Architecture

CSE 1.3 is a developed prover based on the last version of CSE 1.2. It is an automated
theorem prover for first-order logic without equality mainly based on a novel inference mecha-
nism, called as Contradiction Separation Based Dynamic Multi-Clause Synergized Automated
Deduction (S-CS) [156], which is able to handle multiple (two or more) clauses dynamically in
a synergized way in one deduction step, while binary resolution is its special case. CSE 1.3 also
adopts conventional factoring, equality resolution (ER rule), and variable renaming. Some pre-
processing techniques, including pure literal deletion and simplification based on the distance
to the goal clause, and a number of standard redundancy criteria for pruning the search space:
tautology deletion, subsumption (forward and backward) are applied as well.

CSE 1.3 has been improved, compared with CSE 1.2, mainly from the following aspects:

1. Optimization of contradiction separation algorithm based on full usage of clauses, which
is able to increase the sufficiency of clauses participating in deduction.

2. Optimization of contradiction separation algorithm based on optimized deduction path,
which is able to effectively control the unifier complexity in the deduction process.

3. Dynamic adjustment of clause and literal weight update in the deduction process.

Internally, CSE 1.3 works only with clausal normal form. E prover [88] is adopted with
thanks for clausification of full first-order logic problems during preprocessing.
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Strategies

CSE 1.3 inherited most of the strategies in CSE 1.2. The main new strategies are:

• SCSs control strategy. Control the number of literals in SCSs generated in the deduction
process, and the SCSs meet the set contradictions will be retained.

• Clause weight update strategy. Different update methods are applied in different clause
deduction stages.

• Literal weight update strategy. Flexible update methods are used for different literal
deduction stages.

Implementation

CSE 1.3 is implemented mainly in C++, and JAVA is used for batch problem running
implementation. Shared data structure is used for constants and shared variables storage. In
addition, special data structure is designed for property description of clause, literal and term,
so that it can support the multiple strategy mode. E prover is used for clausification of FOF
problems, and then TPTP4X is applied to convert the CNF format into TPTP format.

Expected Competition Performance

CSE 1.3 has made some improvements compared to CSE 1.2, and so we expect a better
performance in this year’s competition.

Acknowledgement:
Development of CSE 1.3 has been partially supported by the National Natural Science Foun-
dation of China (NSFC) (Grant No.61673320).

7.3 CSE E 1.2

Feng Cao
Southwest Jiaotong University, China

Architecture

CSE E 1.2 is an automated theorem prover for first-order logic by combining CSE 1.3
and E 2.4, where CSE is based on the Contradiction Separation Based Dynamic Multi-Clause
Synergized Automated Deduction (S-CS) [156] and E is mainly based on superposition. The
combination mechanism is like this: E and CSE are applied to the given problem sequentially.
If either prover solves the problem, then the proof process completes. If neither CSE nor E can
solve the problem, some inferred clauses, especially unit clauses, by CSE will be fed to E as
lemmas, along with the original clauses, for further proof search. This kind of combination is
expected to take advantage of both CSE and E, and produce a better performance. Concretely,
CSE is able to generate a good number of unit clauses, based on the fact that unit clauses are
helpful for proof search and equality handling. On the other hand, E has a good ability on
equality handling.
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Strategies

The strategies of CSE part of CSE E 1.2 take the same strategies as in CSE 1.3 standalone,
e.g., clause/literal selection, strategy selection, and CSC strategy. The main new strategies for
the combined systems are:

• Lemma filtering mainly based on variable appearance.

• Dynamic time allocation scheme in different run stages.

Implementation

CSE E 1.2 is implemented mainly in C++, and JAVA is used for batch problem running
implementation. The job dispatch between CSE and E is implemented in JAVA.

Expected Competition Performance

We expect CSE E 1.2 to solve some hard problems and have a satisfying performance.

Acknowledgement:
Development of CSE 1.3 has been partially supported by the National Natural Science Founda-
tion of China (NSFC) (Grant No.61673320). Stephan Schulz for his kind permission on using
his E prover that makes CSE E possible.

7.4 CVC4 1.8

Andrew Reynolds
University of Iowa, USA

Architecture

CVC4 [7] is an SMT solver based on the DPLL(T) architecture [57] that includes built-in
support for many theories, including linear arithmetic, arrays, bit vectors, datatypes, finite
sets and strings. It incorporates approaches for handling universally quantified formulas. For
problems involving free function and predicate symbols, CVC4 primarily uses heuristic ap-
proaches based on conflict-based instantiation and E-matching for theorems, and finite model
finding approaches for non-theorems. For problems in pure arithmetic, CVC4 uses techniques
for counterexample-guided quantifier instantiation [76].

Like other SMT solvers, CVC4 treats quantified formulas using a two-tiered approach. First,
quantified formulas are replaced by fresh Boolean predicates and the ground theory solver(s)
are used in conjunction with the underlying SAT solver to determine satisfiability. If the prob-
lem is unsatisfiable at the ground level, then the solver answers “unsatisfiable”. Otherwise, the
quantifier instantiation module is invoked, and will either add instances of quantified formu-
las to the problem, answer “satisfiable”, or return unknown. Finite model finding in CVC4
targets problems containing background theories whose quantification is limited to finite and
uninterpreted sorts. In finite model finding mode, CVC4 uses a ground theory of finite car-
dinality constraints that minimizes the number of ground equivalence classes, as described in
[78]. When the problem is satisfiable at the ground level, a candidate model is constructed that
contains complete interpretations for all predicate and function symbols. It then adds instances
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of quantified formulas that are in conflict with the candidate model, as described in [79]. If no
instances are added, it reports “satisfiable”.

CVC4 has native support for problems in higher-order logic, as described in recent work [6].
It uses a pragmatic approach for HOL, where lambdas are eliminated eagerly via lambda lifting.
The approach extends the theory solver for quantifier-free uninterpreted functions (UF) and
E-matching. For the former, the theory solver for UF in CVC4 now handles equalities between
functions using an extensionality inference. Partial applications of functions are handle using
a (lazy) applicative encoding where some function applications are equated to the applicative
encoding. For the latter, several of the data structures for E-matching have been modified to
incorporate matching in the presence of equalities between functions, function variables, and
partial function applications.

Strategies

For handling theorems, CVC4 primarily uses conflict-based quantifier instantiation [77, 5],
enumerative instantiation [74] and E-matching. CVC4 uses a handful of orthogonal trigger
selection strategies for E-matching. For handling non-theorems, CVC4 primarily uses finite
model finding techniques. Since CVC4 with finite model finding is also capable of establishing
unsatisfiability, it is used as a strategy for theorems as well. For problems in pure arithmetic,
CVC4 uses variations of counterexample-guided quantifier instantiation [75], which select rel-
evant quantifier instantiations based on models for counterexamples to quantified formulas.
At the quantifier-free level, CVC4 uses standard decision procedures for linear arithmetic and
uninterpreted functions, as well as heuristic approaches for handling non-linear arithmetic [80].

Implementation

CVC4 is implemented in C++. The code is available from:

https://github.com/CVC4

Expected Competition Performance

The first-order theorem proving and finite model finding capabilities of CVC4 have not
changed much in the past year. Its heuristics for linear and non-linear arithmetic have changed
slightly, which should impact TFA. Its higher-order capabilities have undergone some minor
improvements, which should lead to slightly better performance in THF.

7.5 E 2.4

Stephan Schulz
DHBW Stuttgart, Germany

Architecture

E 2.4pre [84, 88, 89] is a purely equational theorem prover for many-sorted first-order logic
with equality. It consists of an (optional) clausifier for pre-processing full first-order formulae
into clausal form, and a saturation algorithm implementing an instance of the superposition
calculus with negative literal selection and a number of redundancy elimination techniques. E
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is based on the DISCOUNT-loop variant of the given-clause algorithm, i.e., a strict separation
of active and passive facts. No special rules for non-equational literals have been implemented.
Resolution is effectively simulated by paramodulation and equality resolution. As of E 2.1,
PicoSAT [17] can be used to periodically check the (on-the-fly grounded) proof state for propo-
sitional unsatisfiability.

For the LTB divisions, a control program uses a SInE-like analysis to extract reduced ax-
iomatizations that are handed to several instances of E. E will not use on-the-fly learning this
year.

Strategies

Proof search in E is primarily controlled by a literal selection strategy, a clause selection
heuristic, and a simplification ordering. The prover supports a large number of pre-programmed
literal selection strategies. Clause selection heuristics can be constructed on the fly by combining
various parameterized primitive evaluation functions, or can be selected from a set of predefined
heuristics. Clause evaluation heuristics are based on symbol-counting, but also take other clause
properties into account. In particular, the search can prefer clauses from the set of support,
or containing many symbols also present in the goal. Supported term orderings are several
parameterized instances of Knuth-Bendix-Ordering (KBO) and Lexicographic Path Ordering
(LPO), which can be lifted in different ways to literal orderings.

For CASC-27, E implements a strategy-scheduling automatic mode. The total CPU time
available is broken into several (unequal) time slices. For each time slice, the problem is classified
into one of several classes, based on a number of simple features (number of clauses, maximal
symbol arity, presence of equality, presence of non-unit and non-Horn clauses, ...). For each
class, a schedule of strategies is greedily constructed from experimental data as follows: The
first strategy assigned to a schedule is the the one that solves the most problems from this class
in the first time slice. Each subsequent strategy is selected based on the number of solutions
on problems not already solved by a preceding strategy.

About 230 different strategies have been thoroughly evaluated on all untyped first-order
problems from TPTP 7.2.0. In addition, we have explored some parts of the heuristic parameter
space with a short time limit of 5 seconds. This allowed us to test about 650 strategies on all
TPTP problems, and an extra 7000 strategies on all 1193 UEQ problems from TPTP 7.2.0.
About 100 of these strategies are used in the automatic mode, and about 450 are used in at
least one schedule.

Implementation

E is build around perfectly shared terms, i.e. each distinct term is represented only once
in a term bank. The whole set of terms thus consists of a number of interconnected directed
acyclic graphs. Term memory is managed by a simple mark-and-sweep garbage collector. Un-
conditional (forward) rewriting using unit clauses is implemented using perfect discrimination
trees with size and age constraints. Whenever a possible simplification is detected, it is added
as a rewrite link in the term bank. As a result, not only terms, but also rewrite steps are
shared. Subsumption and contextual literal cutting (also known as subsumption resolution) is
supported using feature vector indexing [87]. Superposition and backward rewriting use fin-
gerprint indexing [86], a new technique combining ideas from feature vector indexing and path
indexing. Finally, LPO and KBO are implemented using the elegant and efficient algorithms
developed by Bernd Löchner in [52, 53]. The prover and additional information are available at
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https://www.eprover.org

Expected Competition Performance

E 2.4 was the CASC-27 UEQ winner.

7.6 E 2.5

Stephan Schulz
DHBW Stuttgart, Germany

Architecture

E 2.5pre [84, 88, 89] is a purely equational theorem prover for many-sorted first-order logic
with equality. It consists of an (optional) clausifier for pre-processing full first-order formulae
into clausal form, and a saturation algorithm implementing an instance of the superposition
calculus with negative literal selection and a number of redundancy elimination techniques. E
is based on the DISCOUNT-loop variant of the given-clause algorithm, i.e., a strict separation
of active and passive facts. No special rules for non-equational literals have been implemented.
Resolution is effectively simulated by paramodulation and equality resolution. As of E 2.1,
PicoSAT [17] can be used to periodically check the (on-the-fly grounded) proof state for propo-
sitional unsatisfiability.

For the LTB divisions, a control program uses a SInE-like analysis to extract reduced ax-
iomatizations that are handed to several instances of E. E will not use on-the-fly learning this
year.

Strategies

Proof search in E is primarily controlled by a literal selection strategy, a clause selection
heuristic, and a simplification ordering. The prover supports a large number of pre-programmed
literal selection strategies. Clause selection heuristics can be constructed on the fly by combining
various parameterized primitive evaluation functions, or can be selected from a set of predefined
heuristics. Clause evaluation heuristics are based on symbol-counting, but also take other clause
properties into account. In particular, the search can prefer clauses from the set of support,
or containing many symbols also present in the goal. Supported term orderings are several
parameterized instances of Knuth-Bendix-Ordering (KBO) and Lexicographic Path Ordering
(LPO), which can be lifted in different ways to literal orderings.

For CASC-J10, E implements a strategy-scheduling automatic mode. The total CPU time
available is broken into several (unequal) time slices. For each time slice, the problem is classified
into one of several classes, based on a number of simple features (number of clauses, maximal
symbol arity, presence of equality, presence of non-unit and non-Horn clauses, possibly presence
of certain axiom patterns, ...). For each class, a schedule of strategies is greedily constructed
from experimental data as follows: The first strategy assigned to a schedule is the the one
that solves the most problems from this class in the first time slice. Each subsequent strategy
is selected based on the number of solutions on problems not already solved by a preceding
strategy.

About 130 different strategies have been thoroughly evaluated on all untyped first-order
problems from TPTP 7.3.0. We have also explored some parts of the heuristic parameter space
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with a short time limit of 5 seconds. This allowed us to test about 650 strategies on all TPTP
problems, and an extra 7000 strategies on UEQ problems from TPTP 7.2.0. About 100 of these
strategies are used in the automatic mode, and about 450 are used in at least one schedule.

Implementation

E is build around perfectly shared terms, i.e. each distinct term is only represented once
in a term bank. The whole set of terms thus consists of a number of interconnected directed
acyclic graphs. Term memory is managed by a simple mark-and-sweep garbage collector. Un-
conditional (forward) rewriting using unit clauses is implemented using perfect discrimination
trees with size and age constraints. Whenever a possible simplification is detected, it is added
as a rewrite link in the term bank. As a result, not only terms, but also rewrite steps are
shared. Subsumption and contextual literal cutting (also known as subsumption resolution) is
supported using feature vector indexing [87]. Superposition and backward rewriting use fin-
gerprint indexing [86], a new technique combining ideas from feature vector indexing and path
indexing. Finally, LPO and KBO are implemented using the elegant and efficient algorithms
developed by Bernd Löchner in [52, 53]. The prover and additional information are available at

https://www.eprover.org

Expected Competition Performance

The inference core of E 2.5pre has been slightly modified since last years pre-release. We
have also been able to evaluate some more different search strategies. As a result, we expect
performance to be somewhat better than in the last years, especially in UEQ. The system is
expected to perform well in most proof classes, but will at best complement top systems in the
disproof classes.

7.7 Enigma 0.5.1

Jan Jakubuv
Czech Technical University in Prague, Czech Republic

Architecture

ENIGMA (Efficient learNing-based Inference Guiding MAchine) [42, 43, 44, 30, 22, 40] is an
efficient implementation of learning-based guidance for given clause selection in saturation-based
automated theorem provers. Clauses from many proof searches are classified as positive and
negative based on their participation in the proofs. An efficient classification model is trained
on this data, using fast feature-based characterization of the clauses. The learned model is then
tightly linked with the core prover and used as a basis of a parameterized evaluation heuristic
that provides fast ranking of all generated clauses. ENIGMA 0.4 uses E as its underlying prover.
The CASC-27 FOF competition version will most likely use a classifier based on gradient-
boosted trees (XGBoost or LightGBM) and clause features that abstract from symbol and
formula/clause names. We may also include neural classifiers based on clause structure. The
system will be pre-trained on the latest public TPTP library and also use a portfolio of strategies
pre-trained for TPTP with BliStr(Tune) [149, 41]. The system may also include strategies for
large TPTP problems used previously in the E.T. system.
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Strategies

The core system is a modification of E adding learning-based evaluation of the generated
clauses. The system is pre-trained on TPTP using abstracted characterization of clauses, and
the trained classifier is used during the competition as an additional clause evaluation heuristic
that is combined in various ways with the core E strategies.

Implementation

The system modifies E’s implementation by adding various features extraction methods and
linking E with efficient learning-based classifiers (tree-based, linear and neural). ENIGMA is
available at:

https://github.com/ai4reason/enigmatic

Expected Competition Performance

ENIGMA should be able to improve on E’s auto schedule in FOF.

7.8 Etableau 0.2

John Hester
University of Florida, USA

Architecture

Etableau 0.2 is an automated theorem prover built alongside E [88], using it as a library.
Etableau at a basic level implements the clausal connection calculus, with enforced regularity,
folding up, local unification, and other improvements. The greatest distinguishing feature of
Etableau is a novel calculus using E’s saturation to close local branches of tableaux. If a branch
is local (shares no variables with other branches of the tableau) and cannot be closed by other
means, the branch is saturated as an independent problem. If a contradiction is found, this
local branch can now be marked as closed. If a local branch is found to be satisfiable, the
problem is satisfiable.

Strategies

Etableau uses iterative deepening to control search through the space of tableaux. At a
given maximum depth, tableaux to be expanded on are chosen based on the ratio of branches
that have been closed. In other words, tableaux that have many closed branches and a small
number of remaining open branches are processed first. In situations where attempts to close
branches by saturation are made, E is used with its auto heuristic.

Implementation

Etableau is written in C, using many data structures and functions from E and with many
added. Etableau is available at this github repository:

https://github.com/hesterj/E-TAB
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Expected Competition Performance

Etableau is expected to perform well on problems with smaller numbers of axioms, and
struggle on problems with many axioms.

7.9 GKC 0.5

Tanel Tammet
Tallinn University of Technology, Estonia

Architecture

GKC [146] is a resolution prover optimized for search in large knowledge bases. It is used
as a foundation (GK Core) for building a common-sense reasoner GK. In particular, GK can
handle inconsistencies and perform probabilistic and nonmonotonic reasoning, see [147]. We
envision natural language question answering systems as the main potential application for
these specialized methods.

These standard inference rules have been implemented in GKC:

• Binary resolution with optionally the set of support strategy, negative or positive ordered
resolution or unit restriction.

• Hyperresolution.

• Factorization.

• Paramodulation and demodulation with the Knuth-Bendix ordering.

GKC does not currently implement any propositional inferences or instance generation.

GKC splits the multiple strategies it decides to try between several forked instances. For
the competition the plan is to use eight forks. Each fork runs a subset of strategies sequentially.

Strategies

For CASC GKC uses multiple strategies run sequentially, with the time limit starting at
one second for each, increased 5 times once the whole batch has been perforfmed. The strat-
egy selection takes into consideration the basic properties of the problem, in particular its
approximate size. There is no interplay between different strategies.

We perform the selection of a given clause by using several queues in order to spread the
selection relatively uniformly over these categories of derived clauses and their descendants:
axioms, external axioms, assumptions and goals. The queues are organized in two layers. As a
first layer we use the common ratio-based algorithm of alternating between selecting n clauses
from a weight-ordered queue and one clause from the FIFO queue with the derivation order.
As a second layer we use four separate queues based on the derivation history of a clause. Each
queue in the second layer contains the two sub-queues of the first layer.

GKC only looks for proofs and does not try to show non-provability.
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Implementation

GKC is implemented in C. The data representation machinery is built upon a shared memory
graph database whitedb (http://whitedb.org/), enabling it to solve multiple different queries
in parallel processeses without a need to repeatedly parse or load the large parsed knowledge
base from the disk. An interesting aspect of GKC is the pervasive use of hash indexes, feature
vectors and fingerprints, while no tree indexes are used.

GKC can be obtained from

https://github.com/tammet/gkc/

Expected Competition Performance

Compared to the performance in previous CASC, GKC 0.5 should perform somewhat bet-
ter. In particular, more search strategies have been implemented and the selection of search
strategies is wider and more varied. The core algorithms and data structures remain the same.
We expect GKC to be in the middle of the final ranking for FOF and below the average in
UEQ and LTB. We expect GKC to perform well on very large problems.

7.10 iProver 3.3

Konstantin Korovin
University of Manchester, United Kingdom

Architecture

iProver [48] is an automated theorem prover based on an instantiation calculus Inst-Gen
[49, 27], which is complete for first-order logic. iProver approximates first-order clauses using
propositional abstractions which are solved using MiniSAT [26] and refined using model-guided
instantiations. iProver combines instantiation, resolution and superposition [25] and is extended
with a general abstraction-refinement framework for under-and over-approximations [32, 33].

Recent features in iProver include:

• Superposition calculus together with simplifications such as demodulation, light normali-
sation, subsumption, subsumption resolution and global subsumption. iProver’s simplifi-
cation set up [25] is tunable via command line options and generalises common architec-
tures such as Discount or Otter.

• Heuristics used in iProver are learnt using dynamic clustering and hyper-parameter opti-
misation using SMAC [39] as described in [38, 37].

• In the LTB division iProver combines abstraction-refinement with axiom selection based
on the SinE algorithm [36] as implemented in Vampire [50]. iProver will run in parallel
most promising learnt heuristics.

Strategies

iProver has around 100 options to control the proof search including options for literal se-
lection, passive clause selection, frequency of calling the SAT solver, simplifications and options
for combination of instantiation with resolution and superposition. By default iProver will
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execute a small number of fixed schedules of selected options depending on general syntactic
properties such as Horn/non-Horn, equational/non-equational, and maximal term depth. In
the competition we will also use a selection of learnt strategies.

Implementation

iProver is implemented in OCaml and for the ground reasoning uses MiniSat [26]. iProver
accepts FOF, TFF and CNF formats. Vampire [50, 34] and E prover [88] are used for proof-
producing clausification of FOF/TFF problems, Vampire is also used for SInE axiom selection
[36] in the LTB division. iProver is available at:

http://www.cs.man.ac.uk/~korovink/iprover/

Expected Competition Performance

We expect improvement in performance compared to the previous year due to improved
implementation of superposition, simplifications and heuristic selection.

7.11 lazyCoP 0.1

Michael Rawson
University of Manchester, United Kingdom

Architecture
lazyCoP 0.1 is a connection-tableaux system for first-order logic with equality. It implements
the lazy paramodulation calculus described in [68], with some additional inferences such as
“shortcut” strict rules and equality lemmas. The system implements well-known refinements
of the predicate connection calculus, such as tautology elimination and strong regularity, and
these are lifted to equalities where appropriate. The resulting system appears to be complete,
but we make no theoretical claim one way or another.

The system was originally conceived to efficiently accommodate a machine-learned heuristic
guidance system: this system is not yet guided in this way, but learned heuristics are intended
for a future version.

Strategies

The system explores a tableaux-level search space using the classic A* informed-search algo-
rithm. The (admissible) heuristic function is the number of open branches. Typical connection
systems explore via some kind of iterative deepening: A* search is a necessity for future learned
guidance, and is not as catastrophic in memory consumption as might be expected. No form
of strategy scheduling is yet implemented and the system will run for the entire time allowed
on all available cores.

Implementation

A finite tree of inference rules forms a search space. To expand a selected leaf node, the
system traverses from root to leaf, applying each rule to a new empty tableau. Possible infer-
ences from the resulting tableau are added to the leaf and the resulting nodes are enqueued.
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The system does not yet include a custom clausification routine: a recent build of Vampire
is employed for this purpose. lazyCoP is implemented entirely in the Rust programming lan-
guage, allowing tight control over memory allocation and layout while avoiding some classes of
memory- and thread- safety bugs. The source code (likely to be incomplete and/or buggy up
to and including the competition!) is available at:

https://github.com/MichaelRawson/lazycop

Expected Competition Performance

Performance on problems without equality is hoped to be comparable with other connection
systems, if slightly slower. Problems requiring a modest amount of equational reasoning (or
problems requiring no equational reasoning but containing extraneous equality axioms) are
not expected to perform well, but should not cause catastrophic blowup either. Pure-equality
problems (such as UEQ) are not the intended domain and do not perform well, but the first
author remains hopeful for At Least One Problem.

7.12 leanCoP 2.2

Jens Otten
University of Oslo, Norway

Architecture

leanCoP [67, 58] is an automated theorem prover for classical first-order logic with equality.
It is a very compact implementation of the connection (tableau) calculus [16, 51].

Strategies

The reduction rule of the connection calculus is applied before the extension rule. Open
branches are selected in a depth-first way. Iterative deepening on the proof depth is performed
in order to achieve completeness. Additional inference rules and techniques include regularity,
lemmata, and restricted backtracking [59]. leanCoP uses an optimized structure-preserving
transformation into clausal form [59] and a fixed strategy schedule that is controlled by a shell
script.

Implementation

leanCoP is implemented in Prolog. The source code of the core prover consists only of a few
lines of code. Prolog’s built-in indexing mechanism is used to quickly find connections when
the extension rule is applied.

leanCoP can read formulae in leanCoP syntax and in TPTP first-order syntax. Equality
axioms and axioms to support distinct objects are automatically added if required. The leanCoP
core prover returns a very compact connection proof, which is then translated into a more
comprehensive output format, e.g., into a lean (TPTP-style) connection proof or into a readable
text proof.

The source code of leanCoP 2.2 is available under the GNU general public license. It can
be downloaded from the leanCoP website at:
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http://www.leancop.de

The website also contains information about ileanCoP [58] and MleanCoP [61, 62], two versions
of leanCoP for first-order intuitionistic logic and first-order modal logic, respectively.

Expected Competition Performance

As the prover has not changed, the performance of leanCoP 2.2 is expected to be the same
as last year.

7.13 LEO-II 1.7.0

Alexander Steen
University of Luxembourg, Luxembourg

Architecture

LEO-II [11], the successor of LEO [10], is a higher-order ATP system based on extensional
higher-order resolution. More precisely, LEO-II employs a refinement of extensional higher-
order RUE resolution [9]. LEO-II is designed to cooperate with specialist systems for fragments
of higher-order logic. By default, LEO-II cooperates with the first-order ATP system E [83].
LEO-II is often too weak to find a refutation amongst the steadily growing set of clauses on its
own. However, some of the clauses in LEO-II’s search space attain a special status: they are
first-order clauses modulo the application of an appropriate transformation function. Therefore,
LEO-II launches a cooperating first-order ATP system every n iterations of its (standard)
resolution proof search loop (e.g., 10). If the first-order ATP system finds a refutation, it
communicates its success to LEO-II in the standard SZS format. Communication between
LEO-II and the cooperating first-order ATP system uses the TPTP language and standards.

Strategies

LEO-II employs an adapted “Otter loop”. Moreover, LEO-II uses some basic strategy
scheduling to try different search strategies or flag settings. These search strategies also include
some different relevance filters.

Implementation

LEO-II is implemented in OCaml 4, and its problem representation language is the TPTP
THF language [12]. In fact, the development of LEO-II has largely paralleled the development
of the TPTP THF language and related infrastructure [133]. LEO-II’s parser supports the
TPTP THF0 language and also the TPTP languages FOF and CNF.

Unfortunately the LEO-II system still uses only a very simple sequential collaboration model
with first-order ATPs instead of using the more advanced, concurrent and resource-adaptive
OANTS architecture [13] as exploited by its predecessor LEO.

The LEO-II system is distributed under a BSD style license, and it is available from

http://www.leoprover.org

27



CASC-J10 Geoff Sutcliffe

Expected Competition Performance

LEO-II ist not actively being developed anymore, hence there are no expected improvements
to last year’s CASC results.

7.14 Leo-III 1.4

Alexander Steen
University of Luxembourg, Luxembourg

Architecture

Leo-III [92] [SB18], the successor of LEO-II [11] is a higher-order ATP system based on
extensional higher-order paramodulation with inference restrictions using a higher-order term
ordering. The calculus contains dedicated extensionality rules and is augmented with equational
simplification routines that have their intellectual roots in first-order superposition-based theo-
rem proving. The saturation algorithm is a variant of the given clause loop procedure inspired
by the first-order ATP system E.

Leo-III cooperates with external first-order ATPs which are called asynchronously during
proof search; a focus is on cooperation with systems that support typed first-order (TFF)
input. For this year’s CASC, CVC4 [7] and E [84, 88] are used as external systems. However,
cooperation is in general not limited to first-order systems. Further TPTP/TSTP-compliant
external systems (such as higher-order ATPs or counter model generators) may be included
using simple command-line arguments. If the saturation procedure loop (or one of the external
provers) finds a proof, the system stops, generates the proof certificate and returns the result.

For the LTB division, Leo-III is augmented by an external Python3 driver which schedules
Leo-III of the batches.

Strategies

Leo-III comes with several configuration parameters that influence its proof search by apply-
ing different heuristics and/or restricting inferences. These parameters can be chosen manually
by the user on start-up. Leo-III currently does not offer portfolio scheduling (time slicing) nor
automatic selection of configuration parameters that seems somehow beneficial for the reason-
ing problem input at hand. Strategies and strategy scheduling will be addressed in further
upcoming versions.

Implementation

Leo-III utilizes and instantiates the associated LeoPARD system platform [155] for higher-
order (HO) deduction systems implemented in Scala (currently using Scala 2.12 and running
on a JVM with Java 8). The prover makes use of LeoPARD’s sophisticated data structures and
implements its own reasoning logic on top. A generic parser is provided that supports all TPTP
syntax dialects. It is implemented using ANTLR4 and converts its produced concrete syntax
tree to an internal TPTP AST data structure which is then transformed into polymorphically
typed lambda terms. As of version 1.1, Leo-III supports all common TPTP dialects (CNF,
FOF, TFF, THF) as well as its polymorphic variants [18, 45].
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The term data structure of Leo-III uses a polymorphically typed spine term representation
augmented with explicit substitutions and De Bruijn-indices. Furthermore, terms are perfectly
shared during proof search, permitting constant-time equality checks between alpha-equivalent
terms.

Leo-III’s saturation procedure may at any point invoke external reasoning tools. To that
end, Leo-III includes an encoding module which translates (polymorphic) higher-order clauses
to polymorphic and monomorphic typed first-order clauses, whichever is supported by the
external system. While LEO-II relied on cooperation with untyped first-order provers, Leo-III
exploits the native type support in first-order provers (TFF logic) for removing clutter during
translation and, in turn, higher effectivity of external cooperation.

Leo-III is available on GitHub:

https://github.com/leoprover/Leo-III

Expected Competition Performance

Leo 1.4 was the CASC-27 LTB winner.

7.15 Leo-III 1.5

Alexander Steen
University of Luxembourg, Luxembourg

Architecture

Leo-III [92], the successor of LEO-II [11], is a higher-order ATP system based on exten-
sional higher-order paramodulation with inference restrictions using a higher-order term order-
ing. The calculus contains dedicated extensionality rules and is augmented with equational
simplification routines that have their intellectual roots in first-order superposition-based theo-
rem proving. The saturation algorithm is a variant of the given clause loop procedure inspired
by the first-order ATP system E. Leo-III cooperates with external first-order ATPs that are
called asynchronously during proof search; a focus is on cooperation with systems that support
typed first-order (TFF) input. For this year’s CASC, CVC4 [7] and E [84, 88] are used as
external systems. However, cooperation is in general not limited to first-order systems. Further
TPTP/TSTP-compliant external systems (such as higher-order ATPs or counter model gener-
ators) may be included using simple command-line arguments. If the saturation procedure loop
(or one of the external provers) finds a proof, the system stops, generates the proof certificate
and returns the result.

For the LTB division, Leo-III is augmented by an external Python3 driver which schedules
Leo-III on the batches.

Strategies

Leo-III comes with several configuration parameters that influence its proof search by apply-
ing different heuristics and/or restricting inferences. These parameters can be chosen manually
by the user on start-up. Leo-III implements a naive time slicing approach of some of these
strategies for this CASC.
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Implementation

¡style type=“text/css”¿ .leopard font-variant: small-caps; ¡/style¿ Leo-III utilizes and in-
stantiates the associated ¡SPAN CLASS=“leopard”¿LeoPARD¡/SPAN¿ system platform [155]
for higher-order (HO) deduction systems implemented in Scala (currently using Scala 2.13 and
running on a JVM with Java 8). The prover makes use of ¡span class=“leopard”¿LeoPARD¡/span¿’s
sophisticated data structures and implements its own reasoning logic on top. A generic parser
is provided that supports all TPTP syntax dialects. It is implemented using ANTLR4 and
converts its produced concrete syntax tree to an internal TPTP AST data structure, which is
then transformed into polymorphically typed lambda terms. As of version 1.1, Leo-III supports
all common TPTP dialects (CNF, FOF, TFF, THF) as well as its polymorphic variants [18, 45].

The term data structure of Leo-III uses a polymorphically typed spine term representation
augmented with explicit substitutions and De Bruijn-indices. Furthermore, terms are perfectly
shared during proof search, permitting constant-time equality checks between alpha-equivalent
terms.

Leo-III’s saturation procedure may at any point invoke external reasoning tools. To that
end, Leo-III includes an encoding module which translates (polymorphic) higher-order clauses
to polymorphic and monomorphic typed first-order clauses, whichever is supported by the
external system. While LEO-II relied on cooperation with untyped first-order provers, Leo-III
exploits the native type support in first-order provers (TFF logic) for removing clutter during
translation and, in turn, higher effectivity of external cooperation.

Leo-III is available on GitHub:

https://github.com/leoprover/Leo-III

Expected Competition Performance

Version 1.5 only marginally improves the previous release by fixing some bugs. As CASC is
using wall clock (WC) time instead of CPU time usage in all divisions, the Java VM version of
Leo-III is used in the competition (as opposed to a native build used last year). We hope that
the JRE performs, after a slow start-up, quite well on longer (wrt. WC time) runs. We expect
a similar performance as in last year’s CASC.

Also in the LTB mode, there are no major novelties: only some timing parameters have
been changed compared to last year. Stemming from Leo-III’s support for polymorphic HOL
reasoning, we expect a reasonable performance compared to the other systems. On the other
hand, Leo-III’s LTB mode does not do any learning and/or analysis of the learning samples.

7.16 MaLARea 0.9

Josef Urban
Czech Technical University in Prague, Czech Republic

Architecture

MaLARea 0.8 [148, 150, 47] is a metasystem for ATP in large theories where symbol and
formula names are used consistently. It uses several deductive systems (now E, SPASS, Vam-
pire, Paradox, Mace), as well as complementary AI techniques like machine learning based on
symbol-based similarity, model-based similarity, term-based similarity, and obviously previous
successful proofs. The version for CASC-27 will use the E prover with the BliStr(Tune) [149, 41]
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large-theory strategies, possibly also Prover9, Mace and Paradox. The premise selection meth-
ods will likely also use the distance-weighted k-nearest neighbor [46], ATPBoost [69], and E’s
implementation of SInE.

Strategies

The basic strategy is to run ATPs on problems, then use the machine learner to learn
axiom relevance for conjectures from solutions, and use the most relevant axioms for next ATP
attempts. This is iterated, using different time limits and axiom limits. Various features are
used for learning, and the learning is complemented by other criteria like model-based reasoning,
symbol and term-based similarity, etc.

Implementation

The metasystem is implemented in ca. 2500 lines of Perl. It uses many external programs -
the above mentioned ATPs and machine learner, TPTP utilities, LADR utilities for work with
models, and some standard Unix tools.

MaLARea is available at:

https://github.com/JUrban/MPTP2/tree/master/MaLARea

The metasystem’s Perl code is released under GPL2.

Expected Competition Performance

Thanks to machine learning, MaLARea is strongest on batches of many related problems
with many redundant axioms where some of the problems are easy to solve and can be used for
learning the axiom relevance. MaLARea is not very good when all problems are too difficult
(nothing to learn from), or the problems (are few and) have nothing in common. Some of
its techniques (selection by symbol and term-based similarity, model-based reasoning) could
however make it even there slightly stronger than standard ATPs. MaLARea has a very good
performance on the MPTP Challenge, which is a predecessor of the LTB division, and on several
previous LTB competitions.

7.17 nanoCoP—1.1

Jens Otten
University of Oslo, Norway

Architecture

nanoCoP [63, 64] is an automated theorem prover for classical first-order logic with equality.
It is a very compact implementation of the non-clausal connection calculus [60].

Strategies

An additional decomposition rule is added to the clausal connection calculus and the ex-
tension rule is generalized to non-clausal formulae. Open branches are selected in a depth-first
way. Iterative deepening on the proof depth is performed in order to achieve completeness.
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Additional inference rules and techniques include regularity, lemmata, restricted backtracking,
and a fixed strategy schedule that is controlled by a shell script [66].

Implementation

nanoCoP is implemented in Prolog. The source code of the core prover consists only of a
few lines of code. Prolog’s built-in indexing mechanism is used to quickly find connections when
the extension rule is applied.

nanoCoP can read formulae in leanCoP/nanoCoP syntax and in TPTP first-order syntax.
Equality axioms are automatically added if required. The nanoCoP core prover returns a
compact non-clausal connection proof.

The source code of nanoCoP 1.1 is available under the GNU general public license. It can
be downloaded from the nanoCoP website at:

http://www.leancop.de/nanocop

The provers nanoCoP-i and nanoCoP-M are version of nanoCoP for first-order intuitionistic
logic and first-order modal logic, respectively. They are based on an adapted non-clausal
connection calculus for non-classical logics [65].

Expected Competition Performance

nanoCoP is expected to have a better performance than leanCoP on formulae that have a
nested (non-clausal) structure.

7.18 Prover9 1109a

Bob Veroff on behalf of William McCune
University of New Mexico, USA

Architecture

Prover9, Version 2009-11A, is a resolution/paramodulation prover for first-order logic with
equality. Its overall architecture is very similar to that of Otter-3.3 [56]. It uses the “given clause
algorithm”, in which not-yet-given clauses are available for rewriting and for other inference
operations (sometimes called the “Otter loop”).

Prover9 has available positive ordered (and nonordered) resolution and paramodulation,
negative ordered (and nonordered) resolution, factoring, positive and negative hyperresolution,
UR-resolution, and demodulation (term rewriting). Terms can be ordered with LPO, RPO, or
KBO. Selection of the “given clause” is by an age-weight ratio.

Proofs can be given at two levels of detail: (1) standard, in which each line of the proof
is a stored clause with detailed justification, and (2) expanded, with a separate line for each
operation. When FOF problems are input, proof of transformation to clauses is not given.

Completeness is not guaranteed, so termination does not indicate satisfiability.

Strategies

Prover9 has available many strategies; the following statements apply to CASC.
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Given a problem, Prover9 adjusts its inference rules and strategy according to syntactic
properties of the input clauses such as the presence of equality and non-Horn clauses. Prover9
also does some preprocessing, for example, to eliminate predicates.

For CASC Prover9 uses KBO to order terms for demodulation and for the inference rules,
with a simple rule for determining symbol precedence.

For the FOF problems, a preprocessing step attempts to reduce the problem to independent
subproblems by a miniscope transformation; if the problem reduction succeeds, each subproblem
is clausified and given to the ordinary search procedure; if the problem reduction fails, the
original problem is clausified and given to the search procedure.

Implementation

Prover9 is coded in C, and it uses the LADR libraries. Some of the code descended from EQP
[55]. (LADR has some AC functions, but Prover9 does not use them). Term data structures
are not shared (as they are in Otter). Term indexing is used extensively, with discrimination
tree indexing for finding rewrite rules and subsuming units, FPA/Path indexing for finding
subsumed units, rewritable terms, and resolvable literals. Feature vector indexing [85] is used
for forward and backward nonunit subsumption. Prover9 is available from

http://www.cs.unm.edu/~mccune/prover9/

Expected Competition Performance

Prover9 is the CASC fixed point, against which progress can be judged. Each year it is
expected do worse than the previous year, relative to the other systems.

7.19 PyRes 1.3

Stephan Schulz
DHBW Stuttgart, Germany

Architecture

PyRes [90] is a simple resolution-style theorem prover for first-order logic, implemented in
very clear and well-commented Python. It has been written as a pedagogical tool to illustrate
the architecture and basic algorithms of a saturation-style theorem prover. The prover consists
of a parser for (most of) TPTP-3 format, a simple clausifier to convert full first-order format
into clause normal form, and a saturation core trying to derive the empty clause from the
resulting clause set.

The saturation core is based on the DISCOUNT-loop variant of the given-clause algorithm,
i.e., a strict separation of active and passive facts. It implements simple binary resolution
and factoring [82], optionally with selection of negative literals [3]. Redundancy elimination is
restricted to forward and backward subsumption and tautology deletion. There are no inference
rules for equality - if equality is detected, the necessary axioms are added.

Strategies
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The prover supports several negative literal selection strategies, as well as selection of the
given clause from a set of differently weighted priority queues in the style of E [89]. In the com-
petition, it will always select the syntactically largest literal, and will use weight-age interleaved
clause selection with a pick-given ratio of 5 to 1.

Implementation

The prover is implemented in Python 3, with maximal emphasis on clear and well-documented
code. Terms are represented as nested lists (equivalent to LISP style s-expressions). Literals,
clauses, and formulas are implemented as classes using an object-oriented style.

One of the changes compared to last years version is the introduction of simple indices for
unification (which now uses top symbol hashing) and subsumption. Subsumption now uses a
new, simple technique we call predicate abstraction indexing, which represents a clause as an
ordered sequence of the predicate symbols of its literals. PyRes builds a proof object on the
fly, and can print a TPTP-3 style proof or saturation derivation.

The system source is available at:

https://github.com/eprover/PyRes

Expected Competition Performance

Performance is expected to be better than last year, but still mediocre for non-equational
problems, and abysmal for problems with equality. However, per CASC rules, PyRes will still
be assumed superior to any non-participating prover.

7.20 Satallax 3.4

Michael Färber
ENS Paris-Saclay, France

Architecture

Satallax 3.4 [19] is an automated theorem prover for higher-order logic. The particular form
of higher-order logic supported by Satallax is Church’s simple type theory with extensionality
and choice operators. The SAT solver MiniSat [26] is responsible for much of the proof search.
The theoretical basis of search is a complete ground tableau calculus for higher-order logic [21]
with a choice operator [4]. Problems are given in the THF format.

Proof search: A branch is formed from the axioms of the problem and the negation of the
conjecture (if any is given). From this point on, Satallax tries to determine unsatisfiability or
satisfiability of this branch. Satallax progressively generates higher-order formulae and corre-
sponding propositional clauses [20]. These formulae and propositional clauses correspond to
instances of the tableau rules. Satallax uses the SAT solver MiniSat to test the current set of
propositional clauses for unsatisfiability. If the clauses are unsatisfiable, then the original branch
is unsatisfiable. Optionally, Satallax generates lambda-free higher-order logic (lfHOL) formulae
in addition to the propositional clauses [153]. If this option is used, then Satallax periodically
calls the theorem prover E [87] to test for lfHOL unsatisfiability. If the set of lfHOL formulae
is unsatisfiable, then the original branch is unsatisfiable. Upon request, Satallax attempts to
reconstruct a proof which can be output in the TSTP format.
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Strategies

There are about 150 flags that control the order in which formulae and instantiation terms
are considered and propositional clauses are generated. Other flags activate some optional
extensions to the basic proof procedure (such as whether or not to call the theorem prover E).
A collection of flag settings is called a mode. Approximately 500 modes have been defined and
tested so far. A strategy schedule is an ordered collection of modes with information about how
much time the mode should be allotted. Satallax tries each of the modes for a certain amount
of time sequentially. Before deciding on the schedule to use, Satallax parses the problem and
determines if it is big enough that a SInE-based premise selection algorithm [36] should be
used. If SInE is not activated, then Satallax uses a strategy schedule consisting of 37 modes.
If SInE is activated, than Satallax is run with a SInE-specific schedule consisting of 58 modes
with different SInE parameter values selecting different premises. Each mode is tried for time
limits ranging from less than a second to just over 1 minute.

Implementation

Satallax is implemented in OCaml, making use of the external tools MiniSat (via a foreign
function interface) and E. Satallax is available at:

http://cl-informatik.uibk.ac.at/~mfaerber/satallax.html

Expected Competition Performance

Satallax 3.4 was the CASC-27 THF winner.

7.21 Satallax 3.5

Michael Färber
ENS Paris-Saclay, France

Architecture

Satallax [19] is an automated theorem prover for higher-order logic. The particular form
of higher-order logic supported by Satallax is Church’s simple type theory with extensionality
and choice operators. The SAT solver MiniSat [26] is responsible for much of the proof search.
The theoretical basis of search is a complete ground tableau calculus for higher-order logic [21]
with a choice operator [4]. Problems are given in the THF format. A branch is formed from
the axioms of the problem and the negation of the conjecture (if any is given). From this point
on, Satallax tries to determine unsatisfiability or satisfiability of this branch. Satallax pro-
gressively generates higher-order formulae and corresponding propositional clauses [20]. These
formulae and propositional clauses correspond to instances of the tableau rules. Satallax uses
the SAT solver MiniSat to test the current set of propositional clauses for unsatisfiability. If
the clauses are unsatisfiable, then the original branch is unsatisfiable. Optionally, Satallax gen-
erates lambda-free higher-order logic (lfHOL) formulae in addition to the propositional clauses
[153]. If this option is used, then Satallax periodically calls the theorem prover E [87] to test
for lfHOL unsatisfiability. If the set of lfHOL formulae is unsatisfiable, then the original branch
is unsatisfiable. Upon request, Satallax attempts to reconstruct a proof which can be output
in the TSTP format.
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Strategies

There are about 150 flags that control the order in which formulae and instantiation terms
are considered and propositional clauses are generated. Other flags activate some optional
extensions to the basic proof procedure (such as whether or not to call the theorem prover E).
A collection of flag settings is called a mode. Approximately 500 modes have been defined and
tested so far. A strategy schedule is an ordered collection of modes with information about how
much time the mode should be allotted. Satallax tries each of the modes for a certain amount
of time sequentially. Before deciding on the schedule to use, Satallax parses the problem and
determines if it is big enough that a SInE-based premise selection algorithm [36] should be
used. If SInE is not activated, then Satallax uses a strategy schedule consisting of 37 modes.
If SInE is activated, than Satallax is run with a SInE-specific schedule consisting of 58 modes
with different SInE parameter values selecting different premises. Each mode is tried for time
limits ranging from less than a second to just over 1 minute.

Implementation

Satallax is implemented in OCaml, making use of the external tools MiniSat (via a foreign
function interface) and E.

Satallax is available at:

http://cl-informatik.uibk.ac.at/~mfaerber/satallax.htmlhttp://cl-informatik.uibk.ac.at/~mfaerber/satallax.html}</A>

Expected Competition Performance

The main change from Satallax 3.4 is the switch to a branch of E that fixes a higher-order
unsoundness. The performance of Satallax 3.5 should be comparable to Satallax 3.4.

7.22 Twee 2.2.1

Nick Smallbone
Chalmers University of Technology, Sweden

Architecture

Twee 2.2.1 is an equational prover based on unfailing completion [2]. It features ground
joinability testing [54] and a connectedness test [1], which together eliminate many redundant
inferences in the presence of unorientable equations.

Twee’s implementation of ground joinability testing performs case splits on the order of
variables, in the style of [54], and discharges individual cases by rewriting modulo a variable
ordering. The case splitting strategy chooses only useful case splits, which prevents the number
of cases from blowing up.

Horn clauses are encoded as equations as described in [23]. The CASC version of Twee
“handles” non-Horn clauses by discarding them.

Strategies
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Twee’s strategy is simple and it does not tune its heuristics or strategy based on the input
problem. The term ordering is always KBO; functions are ordered by number of occurrences
and always have weight 1.

The main loop is a DISCOUNT loop. The active set contains rewrite rules and unorientable
equations, which are used for rewriting, and the passive set contains unprocessed critical pairs.
Twee often interreduces the active set, and occasionally simplifies the passive set with respect
to the active set. Each critical pair is scored using a weighted sum of the weight of both of
its terms. Terms are treated as DAGs when computing weights, i.e., duplicate subterms are
only counted once per term. The weights of critical pairs that correspond to Horn clauses are
adjusted by the heuristic described in [23], section 5.

For CASC, to take advantage of multiple cores, several versions of Twee run in parallel using
different parameters.

Implementation

Twee is written in Haskell. Terms are represented as array-based flatterms for efficient
unification and matching. Rewriting uses an imperfect discrimination tree.

The passive set is represented compactly (12 bytes per critical pair) by storing only the
information needed to reconstruct the critical pair, not the critical pair itself. Because of this,
Twee can run for an hour or more without exhausting memory.

Twee uses an LCF-style kernel: all rules in the active set come with a certified proof object
which traces back to the input axioms. When a conjecture is proved, the proof object is
transformed into a human-readable proof. Proof construction does not harm efficiency because
the proof kernel is invoked only when a new rule is accepted. In particular, reasoning about
the passive set does not invoke the kernel. The translation from Horn clauses to equations is
not yet certified.

Twee can be downloaded from:

http://nick8325.github.io/twee/

Expected Competition Performance

Twee is quite strong at UEQ, but will be at a disadvantage compared to provers with
smart timeslicing (such as E and Vampire) which can make better use of the multiple cores.
Prediction: Twee will solve more problems than last year but finish below E and Vampire. It
could still solve some problems that no-one else does, though. Twee will do badly in FOF since
it throws away all non-Horn clauses. It may get lucky and solve a few hard problems, especially
if some mostly-equational problems show up.

7.23 Vampire 4.4

Giles Reger
University of Manchester, United Kingdom

There are no major changes to the main part of Vampire since 4.4, beyond some new proof
search heuristics and new default values for some options. The biggest addition is support for
higher-order reasoning via translation to applicative form and combinators, addition of axioms
and extra inference rules, and a new form of combinatory unification.
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Architecture

Vampire [50] 4.4 is an automatic theorem prover for first-order logic with extensions to
theory-reasoning and higher-order logic. Vampire implements the calculi of ordered binary
resolution and superposition for handling equality. It also implements the Inst-gen calculus and
a MACE-style finite model builder [71]. Splitting in resolution-based proof search is controlled
by the AVATAR architecture which uses a SAT or SMT solver to make splitting decisions
[151, 70]. Both resolution and instantiation based proof search make use of global subsumption.

A number of standard redundancy criteria and simplification techniques are used for pruning
the search space: subsumption, tautology deletion, subsumption resolution and rewriting by
ordered unit equalities. The reduction ordering is the Knuth-Bendix Ordering. Substitution
tree and code tree indexes are used to implement all major operations on sets of terms, literals
and clauses. Internally, Vampire works only with clausal normal form. Problems in the full
first-order logic syntax are clausified during preprocessing. Vampire implements many useful
preprocessing transformations including the SinE axiom selection algorithm.

When a theorem is proved, the system produces a verifiable proof, which validates both the
clausification phase and the refutation of the CNF.

Vampire 4.4 provides a very large number of options for strategy selection. The most
important ones are:

• Choices of saturation algorithm:

– Limited Resource Strategy [81]

– DISCOUNT loop

– Otter loop

– Instantiation using the Inst-Gen calculus

– MACE-style finite model building with sort inference

• Splitting via AVATAR [151]

• A variety of optional simplifications.

• Parameterized reduction orderings.

• A number of built-in literal selection functions and different modes of comparing literals
[35].

• Age-weight ratio that specifies how strongly lighter clauses are preferred for inference
selection.

• Set-of-support strategy.

• For theory-reasoning:

– Ground equational reasoning via congruence closure.

– Addition of theory axioms and evaluation of interpreted functions.

– Use of Z3 with AVATAR to restrict search to ground-theory-consistent splitting
branches [70].

– Specialised theory instantiation and unification [73].
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– Extensionality resolution with detection of extensionality axioms

• For higher-order problems:

– Translation to applicative and combinator form.

– Addition of combinator axioms.

– Addition of shortcut inference rules that encode axioms.

– Proof search heuristics targetting the growth of combinator axioms.

– Restricted combinatory unification [73].

Implementation

Vampire 4.4 is implemented in C++. It makes use of Minisat and Z3.

Expected Competition Performance

Vampire 4.4 was the CASC-27 TFA, FOF, and FNT winner.

7.24 Vampire 4.5

Giles Reger
University of Manchester, United Kingdom

Architecture

Vampire [50] 4.5 is an automatic theorem prover for first-order logic with extensions to
theory-reasoning and higher-order logic. Vampire implements the calculi of ordered binary res-
olution and superposition for handling equality. It also implements the Inst-gen calculus and a
MACE-style finite model builder [71]. Splitting in resolution-based proof search is controlled by
the AVATAR architecture which uses a SAT or SMT solver to make splitting decisions [151, 70].
A number of standard redundancy criteria and simplification techniques are used for pruning
the search space: subsumption, tautology deletion, subsumption resolution and rewriting by or-
dered unit equalities. The reduction ordering is the Knuth-Bendix Ordering. Substitution tree
and code tree indexes are used to implement all major operations on sets of terms, literals and
clauses. Internally, Vampire works only with clausal normal form. Problems in the full first-
order logic syntax are clausified during preprocessing [72]. Vampire implements many useful
preprocessing transformations including the SinE axiom selection algorithm. When a theorem
is proved, the system produces a verifiable proof, which validates both the clausification phase
and the refutation of the CNF.

Strategies

Vampire 4.5 provides a very large number of options for strategy selection. The most
important ones are:

• Choices of saturation algorithm:

– Limited Resource Strategy [81]
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– DISCOUNT loop

– Otter loop

– Instantiation using the Inst-Gen calculus

– MACE-style finite model building with sort inference

• Splitting via AVATAR [151]

• A variety of optional simplifications.

• Parameterized reduction orderings.

• A number of built-in literal selection functions and different modes of comparing literals
[35].

• Age-weight ratio that specifies how strongly lighter clauses are preferred for inference
selection. This has been extended with a layered clause selection approach [28].

• Set-of-support strategy with extensions for theory reasoning.

• For theory-reasoning:

– Ground equational reasoning via congruence closure.

– Addition of theory axioms and evaluation of interpreted functions.

– Use of Z3 with AVATAR to restrict search to ground-theory-consistent splitting
branches [70].

– Specialised theory instantiation and unification [73].

– Extensionality resolution with detection of extensionality axioms

• For higher-order problems:

– Translation to polymorphic first-order logic using applicative form and combinators.

– A new superposition calculus [14] utilising a KBO-like ordering [15] for orienting
combinator equations. The calculus introduces an inference, narrow, for rewriting
with combinator equations.

– Proof search heuristics targeting the growth of clauses resulting from narrowing.

– An extension of unification with abstraction to deal with functional and boolean
extensionality.

• Various inferences to deal with booleans

Implementation

Vampire 4.5 is implemented in C++. It makes use of minisat and Z3. See the website

https://vprover.github.iohttps://vprover.github.io/}</A>

for more information and access to the GitHub repository.
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Expected Competition Performance

There are four areas of improvement in Vampire 4.5. Firstly, a new layered clause selection
approach [28] gives Vampire more fine-grained control over clause selection, in particular the
way in which clauses involving theory axioms are selected. Secondly, theory evaluation and
instantiation methods have been overhauled. Thirdly, a new subsumption demodulation rule
[29] improves support for reasoning with conditional equalities. Finally, higher-order reasoning
(introduced in Vampire 4.4) has been rewritten based on a new superposition calculus [14]
utilising a KBO-like ordering [15] for orienting combinator equations. Vampire 4.5 should be
an improvement on Vampire 4.4.

7.25 Zipperposition 2.0

Petar Vukmirović
Vrije Universiteit Amsterdam, The Netherlands

Architecture

Zipperposition is a superposition-based theorem prover for typed first-order logic with equal-
ity and higher-order logic. It is a pragmatic implementation of a complete calculus for Boolean-
free higher-order logic [8]. It features a number of extensions that include polymorphic types;
user-defined rewriting on terms and formulas (“deduction modulo theories”); a lightweight vari-
ant of AVATAR for case splitting; boolean reasoning [154]. The core architecture of the prover
is based on saturation with an extensible set of rules for inferences and simplifications. Zipper-
position uses a recently developed full higher-order unification algorithm that enables efficient
integration of procedures for decidable fragments of higher-order unification [152]. The initial
calculus and main loop were imitations of an old version of E [84], but there are many more
rules nowadays. A summary of the calculus for integer arithmetic and induction can be found
in [24].

Strategies

The system uses various strategies in a portfolio. The strategies are run in parallel, making
use of all CPU cores available. We designed the portfolio of strategies by manual inspection of
different TPTP problems. Heuristics used in Zipperposition are inspired by efficient heuristics
used in E. Portfolio mode differentiates higher-order problems from the first-order ones. If
the problem is first-order all higher-order prover features are turned off. Other than that, the
portfolio is static and does not depend on the syntactic properties of the problem.

Implementation

The prover is implemented in OCaml, and has been around for eight years. Term indexing
is done using fingerprints for unification, perfect discrimination trees for rewriting, and feature
vectors for subsumption. Some inference rules such as contextual literal cutting make heavy use
of subsumption. For higher-order problems some strategies use E prover, running in lambda-free
higher-order mode, as an end-game backend prover. The code can be found at

https://github.com/sneeuwballen/zipperposition

41



CASC-J10 Geoff Sutcliffe

and is entirely free software (BSD-licensed).
Zipperposition can also output graphic proofs using graphviz. Some tools to perform type

inference and clausification for typed formulas are also provided, as well as a separate library
for dealing with terms and formulas [24].

Expected Competition Performance

The prover is expected to have average performance on FOF, similar to Prover9, and a good
performance on THF, at the level of last-year’s CASC winner.

8 Conclusion

The 10th IJCAR ATP System Competition was the twenty-fifth large scale competition for
classical logic ATP systems. The organizer believes that CASC fulfills its main motivations:
stimulation of research, motivation for improving implementations, evaluation of relative capa-
bilities of ATP systems, and providing an exciting event. Through the continuity of the event
and consistency in the the reporting of the results, performance comparisons with previous and
future years are easily possible. The competition provides exposure for system builders both
within and outside of the community, and provides an overview of the implementation state of
running, fully automatic, classical logic, ATP systems.
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