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Abstract

The CADE ATP System Competition (CASC) evaluates the performance of sound,
fully automatic, classical logic, ATP systems. The evaluation is in terms of the number of
problems solved, the number of acceptable proofs and models produced, and the average
runtime for problems solved, in the context of a bounded number of eligible problems chosen
from the TPTP problem library and other useful sources of test problems, and specified
time limits on solution attempts. The CADE-28 ATP System Competition (CASC-28)
was held on 13th July 2021. The design of the competition and its rules, and information
regarding the competing systems, are provided.

1 Introduction

The CADE and IJCAR conferences are the major forums for the presentation of new research
in all aspects of automated deduction. In order to stimulate ATP research and system devel-
opment, and to expose ATP systems within and beyond the ATP community, the CADE ATP
System Competition (CASC) is held at each CADE and IJCAR conference. CASC-28 was
held on 13th July 2021, as part of the 28th International Conference on Automated Deduction
(CADE-28). It was the twenty-sixth competition in the CASC series [131, 137, 134, 85, 87, 130,
128, 129, 92, 94, 96, 98, 101, 103, 105, 107, 109, 111, 113, 136, 115, 117, 120, 123, 124].

CASC evaluates the performance of sound, fully automatic, classical logic, ATP systems.
The evaluation is in terms of:

• the number of problems solved,
• the number of acceptable proofs and models produced, and
• the average runtime for problems solved;

in the context of:

• a bounded number of eligible problems, chosen from the TPTP problem library [118] and
other useful sources of test problems, and

• specified time limits on solution attempts.

Twenty-two ATP system versions, listed in Tables 1 and 2, entered into the various competi-
tion and demonstration divisions. The winners of the CASC-J10 (the previous CASC) divisions,
and the Prover9 1109a system, were automatically entered into the corresponding demonstra-
tion divisions, to provide benchmarks against which progress can be judged (the competition
archive provides access to the systems’ executables and source code).

The design and procedures of CASC-28 evolved from those of previous CASCs [131, 132, 127,
133, 83, 84, 86, 88, 89, 90, 91, 93, 95, 97, 100, 102, 104, 106, 108, 110, 112, 114, 116, 119, 121, 122].
Important changes for CASC-28 were:
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• The TFA division was placed on hiatus.
• The “Slammer Hammer” (SLH) division was added, with a prize provided by Jasmin
Blanchette’s Matryoshka project1.

• Only one proof by contradictory axioms, for each contradictory set, counted for the rank-
ing in the LTB division.

The competition organizer was Geo↵ Sutcli↵e, assisted by Martin Desharnais for the SLH
and LTB divisions. CASC is overseen by a panel of knowledgeable researchers who are not
participating in the event. The CASC-28 panel members were Peter Baumgartner, Pascal
Fontaine, and Christoph Weidenbach. The competition was run on computers provided by
StarExec at the University of Miami.2 The CASC-28 web site provides access to resources used
before, during, and after the event: http://www.tptp.org/CASC/28

The CASC rules, specifications, and deadlines are absolute. Only the panel has the right
to make exceptions. It is assumed that all entrants have read the web pages related to the
competition, and have complied with the competition rules. Non-compliance with the rules can
lead to disqualification. A “catch-all” rule is used to deal with any unforeseen circumstances:
No cheating is allowed. The panel is allowed to disqualify entrants due to unfairness, and to
adjust the competition rules in case of misuse.

A Tense Note: Attentive readers will notice changes between use of the past to
present tenses in this document. Many parts of CASC are established and stable -
these are described in the present tense (the rules are the rules). Aspects that are
particular to CASC-28 are described in the past tense, so they make sense when
reading this after the event.

2 Divisions

CASC is divided into divisions according to problem and system characteristics. There are
competition divisions in which systems are explicitly ranked, and a demonstration division in
which systems demonstrate their abilities without being ranked. Some divisions are further
divided into problem categories, which makes it possible to analyse, at a more fine grained
level, which systems work well for what types of problems. The competition rankings are made
at only the division level.

2.1 The Competition Divisions

The competition divisions are open to ATP systems that meet the required system properties,
described in Section 6.1. Each division uses problems that have certain logical, language, and
syntactic characteristics, so that the ATP systems that compete in the division are, in principle,
able to attempt all the problems in the division.

TheTHF division: Typed (monomorphic) Higher-order Form theorems (axioms with a provable
conjecture). The THF division has two problem categories:

• The TNE category: THF with No Equality
• The TEQ category: THF with EQuality

1https://matryoshka-project.github.io
2http://starexec.ccs.miami.edu
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The FOF division: First-Order Form theorems (axioms with a provable conjecture). The FOF
division has two problem categories:

• The FNE category: FOF with No Equality
• The FEQ category: FOF with EQuality

The FNT division: First-order form Non-Theorems (axioms with a countersatisfiable conjec-
ture, and satisfiable axiom sets). The FNT division has two problem categories:

• The FNN category: FNT with No equality
• The FNQ category: FNT with eQuality

The UEQ division: Unit EQuality clause normal form theorems (unsatisfiable clause sets).

The SLH division: Typed (monomorphic) higher-order theorems without arithmetic (axioms
with a provable conjecture), generated by Isabelle’s SledgeHammer system [55].

The LTB division: Theorems (axioms with a provable conjecture) from Large Theories, pre-
sented in Batches. A large theory has many functions and predicates, and many axioms of
which typically only a few are required for the proof of a theorem. The problems in a batch
are given to an ATP system all at once, and typically have a common core set of axioms. The
batch presentation allows the ATP systems to load and preprocess the common core set of ax-
ioms just once, and to share logical and control results between proof searches. Each problem
category might be accompanied by a set of training problems and their solutions, taken from
the same source as the competition problems. The training data can be used for ATP system
tuning during (typically at the start of) the competition. In CASC-28 the LTB division had
one problem category:

• The JJT category: Problems generated by Isabelle’s SledgeHammer system [55], from
the “Jinja with Threads” entry in Isabelle’s Archive of Formal Proofs (AFP).3

Five versions of each JJT problem were provided: a first-order form (FOF) version, a monomor-
phic typed first-order form (TF0) version, a polymorphic typed first-order form (TF1) version,
a monomorphic typed higher-order form (TH0) version, and a polymorphic typed higher-order
form (TH1) version. Systems could attempt as many of the versions as they wanted, in any
order including in parallel, and a solution to any version counted as a solution to the problem.
The FOF problems had 57 to 6613 axioms, the TF0 problems 51 to 6385 axioms, the TF1
problems 1031 to 1680 axioms, the TH0 problems 14 to 1149 axioms, and the TH1 problems
1019 to 1666 axioms. There were no common core sets of axioms.

Section 3.2 explains what problems are eligible for use in each division and category. Sec-
tion 4 explains how the systems are ranked in each division.

2.2 The Demonstration Division

ATP systems that cannot run in the competition divisions for any reason (e.g., the system
requires special hardware, the system is a previous winner, or the entrant is an organizer) can
be entered into the demonstration division. Demonstration division systems can run on the
competition computers, or the computers can be supplied by the entrant. The demonstration
division results are presented along with the competition divisions’ results, but might not be
comparable with those results. The systems are not ranked, and no trophies or prizes are
awarded.

3https://www.isa-afp.org/entries/JinjaThreads.html
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3 Infrastructure

3.1 Computers

The competition computers had:

• Two octa-core Intel(R) Xeon(R) E5-2667, 3.20GHz CPUs
• 256GB memory
• The CentOS Linux release 7.4.1708 (Core) operating system, with
Linux kernel 3.10.0-693.el7.x86 64.

One ATP system runs on one CPU at a time, with access to half (128GB) the memory.
Systems can use all the cores on the CPU, which is advantageous in the divisions where a wall
clock time limit was used.

3.2 Problems

3.2.1 Problem Selection

The problems for the THF, FOF, FNT, and UEQ divisions were taken from the TPTP Problem
Library [118], version v7.5.0. The TPTP version used for CASC is released only after the
competition has started, so that new problems have not been seen by the entrants. The problems
have to meet certain criteria to be eligible for use. The problems used are randomly selected
from the eligible problems based on a seed supplied by the competition panel:

• The TPTP tags problems that designed specifically to be suited or ill-suited to some
ATP system, calculus, or control strategy as biased, and they are excluded from the
competition.

• The problems are syntactically non-propositional.
• The TPTP uses system performance data in the Thousands of Solutions from Theorem
Provers (TSTP) solution library to compute problem di�culty ratings in the range 0.00
(easy) to 1.00 (unsolved) [135]. Di�cult problems with a rating in the range 0.21 to 0.99
are eligible. Problems of lesser and greater ratings might also be eligible in some divisions
if there are not enough problems with ratings in that range. Systems can be submitted
before the competition so that their performance data is used for computing the problem
ratings.

• The selection is constrained so that no division or category contains an excessive number
of very similar problems [85].

• The selection is biased to select problems that are new in the TPTP version used, until 50%
of the problems in each problem category have been selected, after which random selection
(from old and new problems) continues. The number of new problems used depends on
how many new problems are eligible and the limitation on very similar problems.

The problems for the SLH division were were generated by Isabelle’s SledgeHammer system.
100 problems were sliced out from the largest theory (measured by the number of proof goals)
in each of 50 randomly selected sessions in Isabelle’s Archive of Formal Proofs (AFP), providing
5000 problems that could be used. 720 appropriately di�cult problems were chosen based on
performance data similar to that in the TSTP.

The problems for the LTB division are taken from various sources, chosen for each CASC.
Each problem category is based on one source. Entrants are expected to honestly not use
publicly available problem sets for tuning before the competition. The process for selecting

6
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problems depends on the problem source. The JJT category problems were generated by
Isabelle’s SledgeHammer system from the “Jinja with Threads” entry in the AFP. The axioms
for each problem were selected from the HOL library and relevant AFP entries using the MeSh
filter that combines the MePo [52] and MaSh [46] filters. The generation aimed to export
problems with 1024 axioms, but more or less axioms occur in the problems because sometimes
the axiom selection fails to find enough relevant axioms, and sometimes monomorphization [17]
yields many new axioms. A total of 18474 problems were exported in each of the five versions,
and appropriately di�cult problems were chosen based on performance data similar to that in
the TSTP.

3.2.2 Number of Problems

In the TPTP-based divisions, the minimal numbers of problems that must be used in each
division and category to ensure su�cient confidence in the competition results are determined
from the numbers of eligible problems in each division and category [29]. The competition
organizers have to ensure that there are su�cient computers available to run the ATP systems
on this minimal number of problems. The minimal numbers of problems are used in determining
the time limits imposed on solution attempts - see Section 3.3. The numbers of problems to
be used in each division of the competition are determined from the number of computers
available, the time allocated to the competition, the number of ATP systems to be run on the
competition computers over the divisions, and the time limits imposed on solution attempts,
according to the following relationship:

NumberOfProblems =
NumberOfComputers ⇤ T imeAllocated

NumberOfATPSystems ⇤ T imeLimit

It is a lower bound on the number of problems because it assumes that every system uses all
of the time limit for each problem. Since some solution attempts succeed before the time limit
is reached, more problems can be used. The numbers of problems used in the categories in the
various divisions are (roughly) proportional to the numbers of eligible problems, after taking
into account the limitation on very similar problems, determined according to the judgement
of the competition organizers.

In the SLH division the number of problems was determined in consultation with Jasmin
Blanchette (who sponsored the prize for the division). Calculations similar to those used for
the TPTP-based divisions were used.

In the LTB division the number of problems in each problem category is determined by the
number of problems in the corresponding problem set. In CASC-28 the JJT problem category
had 10000 problems (with five versions of each problem).

3.2.3 Problem Preparation

The problems are given to the ATP systems in TPTP format, with include directives. In order
to ensure that no system receives an advantage or disadvantage due to the specific presentation
of the problems in the TPTP, the problems in the TPTP-based divisions are obfuscated by:

• stripping out all comment lines, including the problem header
• randomly reordering the formulae/clauses (the include directives are left before the for-
mulae, type declarations and definitions are kept before the symbols’ uses)

• randomly swapping the arguments of associative connectives, and randomly reversing
implications

7
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• randomly reversing equalities

In the non-TPTP-based divisions the formulae are not obfuscated, thus allowing the ATP
systems to take advantage of natural structure that occurs in the problems.

In the TPTP-based divisions the problems are given in increasing order of TPTP di�culty
rating. In the SLH division the problems were given in a roughly estimated order of di�culty.
In the LTB division the problems in each batch are given in their natural order in the problem
source.

3.2.4 Batch Specification Files

The problems for each problem category of the LTB division are listed in a batch specification
file, containing containing global data lines and one or more batch specifications. The global
data lines are:

• A problem category line of the form
division.category LTB.category mnemonic

For CASC-28 it was
division.category LTB.JJT

• The name of a .tgz file (relative to the directory holding the batch specification file) that
contains training data in the form of problems in TPTP format and one or more solutions
to each problem in TSTP format, in a line of the form

division.category.training data tgz file name
For CASC-28 it was

division.category.training data TrainingData/TrainingData.JJT.tgz

The .tgz file expands in place to three directories: Axioms, Problems, and Solutions.
Axioms contains all the axiom files that are used in the training and competition problems.
Problems contains the training problems. Solutions contains a subdirectory for each of
the Problems, containing TPTP format solutions to the problem. The language of a
solution might not be the same as the language of the problem, e.g., a proof to a THF
problem might be written in FOF, or the proof of a TFF problem might be written in
THF.

Each batch specification consists of:

• A header line % SZS start BatchConfiguration

• A specification of whether or not the problems in the batch must be attempted in order
is given, in a line of the form

execution.order ordered/unordered
If the batch is ordered the ATP systems may not start any attempt on a problem, includ-
ing reading the problem file, before ending the attempt on the preceding problem. For
CASC-28 it was

execution.order unordered

• A specification of what output is required from the ATP systems for each problem, in a
line of the form

output.required space separated list
where the available list values are the SZS values Assurance, Proof, Model, and Answer.
For CASC-28 it was

output.required Proof.
• The wall clock time limit per problem, in a line of the form

limit.time.problem.wc limit in seconds

8
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A value of zero indicates no per-problem limit. For CASC-28 it was
limit.time.problem.wc 0

• The overall wall clock time limit for the batch, in a line of the form
limit.time.overall.wc limit in seconds

• A terminator line % SZS end BatchConfiguration

• A header line % SZS start BatchIncludes

• include directives that are used in every problem. All the problems in the batch have
these include directives, and can also have other include directives that are not listed
here. In CASC-28 there were no included axiom files.

• A terminator line % SZS end BatchIncludes

• A header line % SZS start BatchProblems

• Pairs of problem file names (relative to the directory holding the batch specification file),
and output file names where the output for the problem must be written. The output files
must be written in the directory specified as the second argument to the starexec run

script (the first argument is the name of the batch specification file). For CASC-28, see
the additional notes below.

• A terminator line % SZS end BatchProblems

Additional Notes for CASC-28

• In the BatchProblems section, the multiple versions of each problem were specified using
UNIX * globbing, e.g., JJT00001*.p. The versions of each problem had extensions as
follows: the FOF version used +1, the TF0 version used 1, the TF1 version used 2, the
TH0 version used ^1, and the TH1 version used ^2.

• Proof output had to identify which version of the problem was solved - see Section 6.1.
• In the BatchIncludes section (not in problem files), multiple versions of included axiom
files could be specified using UNIX * globbing. For a given problem, systems could use
only the axiom files whose version matched that of the problem file (there might be none).
Using any other versions could lead to weird results.

3.3 Resource Limits

In the TPTP-based divisions, a wall clock time limit was imposed for each problem. The mini-
mal time limit for each problem is 120s. The maximal time limit for each problem is determined
using the relationship used for determining the number of problems, with the minimal number
of problems as the NumberOfProblems. The time limit is chosen as a reasonable value within
the range allowed, and is announced at the competition. There were no CPU time limits (i.e.,
using all cores on the CPU made sense).

In the SLH division, a CPU time limit was imposed for each problem. The minimal time
limit per problem was 15s and the maximal time limit per problem was 90s. The time limit was
chosen as a reasonable value within the range allowed, and was announced at the competition.

In the LTB division, wall clock time limits are imposed. For each batch there might be a
wall clock time limit for each problem, provided in the configuration section at the start of each
batch. If there is a wall clock time limit for each problem, the minimal limit for each problem
is 15s, and the maximal limit for each problem is 90s. For each batch there is an overall wall
clock time limit, provided in the configuration section at the start of each batch. The overall
limit is proportional to the number of problems in the batch, e.g., (but not necessarily) the
batch’s per-problem time limit multiplied by the number of problems in the batch. Time spent
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before starting the first problem of a batch (e.g., preloading and analysing the batch axioms),
and times spent between the end of an attempt on a problem and the starting of the next (e.g.,
learning from a proof just found), are not part of the times taken on the individual problems,
but are part of the overall time taken. There are no CPU time limits.

4 System Evaluation

For each ATP system, for each problem, four items of data are recorded: whether or not the
problem was solved, the CPU time taken, the wall clock time taken, and whether or not a
solution (proof or model) was output.

The systems are ranked in the competition divisions according to the number of problems
solved with an acceptable solution output. Ties are broken according to the average time taken
over problems solved. Trophies are awarded to the competition divisions’ winners.

The competition panel decides whether or not the systems’ solutions are “acceptable”. The
criteria include:

• Derivations must be complete, starting at formulae from the problem, and ending at the
conjecture (for axiomatic proofs) or a false formula (for proofs by contradiction, e.g.,
CNF refutations).

• For solutions that use translations from one form to another, e.g., translation of FOF
problems to CNF, the translations must be adequately documented.

• Derivations must show only relevant inference steps.
• Inference steps must document the parent formulae, the inference rule used, and the
inferred formula.

• Inference steps must be reasonably fine-grained.
• An unsatisfiable set of ground instances of clauses is acceptable for establishing the un-
satisfiability of a set of clauses.

• Models must be complete, documenting the domain, function maps, and predicate maps.
The domain, function maps, and predicate maps may be specified by explicit ground lists
(of mappings), or by any clear, terminating algorithm.

In addition to the ranking criteria, other measures are made and presented in the results:

• The state-of-the-art contribution (SotAC) quantifies the unique abilities of each system.
For each problem solved by a system, its SotAC for the problem is

1� FractionOfSystemsThatSolvedTheProblem

and a system’s overall SotAC is its average for the problems it solves but that are not
solved by all the systems.

• The core usage is the average of the ratios of CPU time to wall clock time used, over
the problems solved. This measures the extent to which the systems take advantage of
multiple cores.

• The e�ciency measure combines the number of problems solved with the time taken.
It is the average of the inverses of the times taken for problems solved, multiplied by
the fraction of problems solved. This can be interpreted intuitively as the average of
the solution rates for problems solved, multiplied by the fraction of problems solved.
E�ciency is computed for both CPU time and wall clock time, to measure how e�ciently
the systems use one core and multiple cores respectively.
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At some time after the competition all high ranking systems in each division are tested
over the entire TPTP. This provides a final check for soundness (see Section 6.1 regarding
soundness checking before the competition). If a system is found to be unsound during or after
the competition, but before the competition report is published, and it cannot be shown that
the unsoundness did not manifest itself in the competition, then the system is retrospectively
disqualified. At some time after the competition, the solutions from the winners (of divisions
ranked by the numbers of solutions output) are checked by the panel. If any of the solutions
are unacceptable, i.e., they are su�ciently worse than the samples provided, then that system
is retrospectively disqualified. All disqualifications are explained in the competition report.

5 System Entry

To be entered into CASC systems must be registered using the CASC system registration form
by the registration deadline. For each system an entrant must be nominated to handle all issues
(e.g., installation and execution di�culties) arising before, during, and after the competition.
The nominated entrant must formally register for CASC. It is not necessary for entrants to
physically attend the competition.

Systems can be entered at only the division level, and can be entered into more than one
division. A system that is not entered into a division is assumed to perform worse than the
entered systems, for that type of problem - wimping out is not an option. Entering many similar
versions of the same system is deprecated, and entrants may be required to limit the number of
system versions that they enter. Systems that rely essentially on running other ATP systems
without adding value are deprecated; the competition panel may disallow or move such systems
to the demonstration division.

The division winners from the previous CASC are automatically entered into their demon-
stration divisions, to provide benchmarks against which progress can be judged. Prover9 1109a
is automatically entered into the FOF division, to provide a fixed-point against which progress
can be judged.

5.1 System Descriptions

A system description has to be provided for each ATP system entered, using the HTML schema
supplied on the CASC web site. The schema has the following sections:

• Architecture. This section introduces the ATP system, and describes the calculus and
inference rules used.

• Strategies. This section describes the search strategies used, why they are e↵ective, and
how they are selected for given problems. Any strategy tuning that is based on specific
problems’ characteristics must be clearly described (and justified in light of the tuning
restrictions described in Section 6.1).

• Implementation. This section describes the implementation of the ATP system, including
the programming language used, important internal data structures, and any special code
libraries used. The availability of the system is also given here.

• Expected competition performance. This section makes some predictions about the per-
formance of the ATP system for each of the divisions and categories in which it is com-
peting.

• References.
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The system description has to be emailed to the competition organizers by the system
description deadline. The system descriptions form part of the competition proceedings (Sec-
tion 7).

5.2 Sample Solutions

For systems in the divisions that require solution output, representative sample solutions must
be emailed to the competition organizers by the sample solutions deadline. Use of the TPTP for-
mat for proofs and finite interpretations is encouraged. The competition panel decides whether
or not solutions are acceptable (see Section 4).

Proof/model samples are required as follows:

• THF: SET014^4
• FOF: SEU140+2
• FNT: NLP042+1 and SWV017+1

• UEQ: BOO001-1

An explanation must be provided for any non-obvious features.

6 System Requirements

6.1 System Properties

Entrants must ensure that their systems execute in the competition environment, and have
the following properties. Entrants are advised to finalize their installation packages and check
these properties well in advance of the system delivery deadline. This gives the competition
organizers time to help resolve any di�culties encountered.

Execution, Soundness, and Completeness

• Systems must be fully automatic, i.e., all command line switches have to be the same for
all problems in each division.

• Systems’ performances must be reproducible by running the system again.
• Systems must be sound. At some time before the competition all the systems in the com-
petition divisions are tested for soundness. Non-theorems are submitted to the systems
in the THF, FOF, UEQ, SLH, and LTB divisions, and theorems are submitted to the
systems in the FNT division. Finding a proof of a non-theorem or a disproof of a theorem
indicates unsoundness. If a system fails the soundness testing it must be repaired by the
unsoundness repair deadline or be withdrawn.

• Systems do not have to be complete in any sense, including calculus, search control,
implementation, or resource requirements.

• All techniques used must be general purpose, and expected to extend usefully to new
unseen problems. The precomputation and storage of information about individual prob-
lems that might appear in the competition or their solutions is not allowed. (It’s OK to
store information about LTB training problems.) Strategies and strategy selection based
on individual problems or their solutions are not allowed. If machine learning procedures
are used to tune a system, the learning must ensure that su�cient generalization is ob-
tained so that no there is no specialization to individual problems or their solutions. The
system description must explain any such tuning or training that has been done. The
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competition panel may disqualify any system that is deemed to be problem specific rather
than general purpose.

Output

• In all divisions except LTB the solution output must be to stdout. In the LTB division
the solution output must be to the named output file for each problem, in the directory
specified as the second argument to the starexec run script. If multiple attempts are
made on a problem in an unordered batch, each successive output file must overwrite the
previous one.

• In the LTB division the systems must print SZS notification lines to stdout when starting
and ending work on a problem (including any cleanup work, such as deleting temporary
files). For example

% SZS status Started for CSR075+2.p

... (system churns away, progress output to file)

% SZS status GaveUp for CSR075+2.p

% SZS status Ended for CSR075+2.p

... and later in another attempt on that problem ...

% SZS status Started for CSR075+2.p

... (system churns away, result and solution overwrites file)

% SZS status Theorem for CSR075+2.p

% SZS status Ended for CSR075+2.p

• For each problem, the system must output a distinguished string indicating what solution
has been found or that no conclusion has been reached. Systems must use the SZS
ontology and standards [99] for this. For example

SZS status Theorem for SYN075+1

or

SZS status GaveUp for SYN075+1

In the LTB division this line must be the last line output before the ending notification
line. The line must also be output to the output file.

• When outputting a solution, the start and end of the solution must be delimited by
distinguished strings. Systems must use the SZS ontology and standards for this. For
example

SZS output start CNFRefutation for SYN075-1.p

...

SZS output end CNFRefutation for SYN075-1.p

The string specifying the problem status must be output before the start of a solution.
Use of the TPTP format for proofs and finite interpretations [126] is encouraged.

• Solutions may not have irrelevant output (e.g., from other threads running in parallel)
interleaved in the solution.
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Resource Usage

• Systems must be interruptible by a SIGXCPU signal so that CPU time limits can be imposed,
and interruptible by a SIGALRM signal so that wall clock time limits can be imposed. For
systems that create multiple processes the signal is sent first to the process at the top of
the hierarchy, then one second later to all processes in the hierarchy. The default action
on receiving these signals is to exit (thus complying with the time limit, as required), but
systems may catch the signals and exit of their own accord. If a system runs past a time
limit this is noticed in the timing data, and the system is considered to have not solved
the problem.

• If a system terminates of its own accord it may not leave any temporary or intermediate
output files. If a system is terminated by a SIGXCPU or SIGALRM it may not leave any
temporary or intermediate files anywhere other than in /tmp.

• For practical reasons excessive output from an ATP system is not allowed. A limit,
dependent on the disk space available, is imposed on the amount of output that can be
produced.

6.2 System Delivery

Entrants must email a StarExec installation package to the competition organizers by the system
delivery deadline. The installation package must be a .tgz file containing only the components
necessary for running the system (i.e., not including source code, etc.). The entrants must also
email a .tgz file containing the source code and any files required for building the StarExec
installation package to the competition organizers by the system delivery deadline.

For systems running on entrant supplied computers in the demonstration division, entrants
must email a .tgz file containing the source code and any files required for building the exe-
cutable system to the competition organizers by the system delivery deadline.

After the competition all competition division systems’ source code is made publicly avail-
able on the CASC web site. In the demonstration division the entrant specifies whether or not
the source code is placed on the CASC web site. An open source license is encouraged.

6.3 System Execution

Execution of the ATP systems is controlled by StarExec. The jobs are queued onto the com-
puters so that each CPU is running one job at a time. All attempts at the Nth problems in all
the divisions and categories are started before any attempts at the (N+1)th problems.

A system has solved a problem i↵ it outputs its termination string within the time limit,
and a system has produced a proof/model i↵ it outputs its end-of-solution string within the
time limit. The result and timing data is used to generate an HTML file, and a web browser is
used to display the results.

The execution of the demonstration division systems is supervised by their entrants.

7 The ATP Systems

These system descriptions were written by the entrants.
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7.1 CSE 1.4

Feng Cao
Southwest Jiaotong University, China

Architecture

CSE 1.4 is a developed prover based on the last version - CSE 1.3. It is an automated theorem
prover for first-order logic without equality, based mainly on a novel inference mechanism called
Contradiction Separation Based Dynamic Multi-Clause Synergized Automated Deduction (S-
CS) [147]. S-CS is able to handle multiple (two or more) clauses dynamically in a synergized way
in one deduction step, while binary resolution is a special case. CSE 1.4 also adopts conventional
factoring, equality resolution (ER rule), and variable renaming. Some pre-processing techniques,
including pure literal deletion and simplification based on the distance to the goal clause, and
a number of standard redundancy criteria for pruning the search space: tautology deletion,
subsumption (forward and backward), are applied as well.

CSE 1.4 has been improved compared with CSE 1.3, mainly from the following aspects:

1. Optimization of the contradiction separation algorithm based on full usage of clauses,
which is able to evaluate whether the input clause has been fully used in the deduction
process.

2. Optimization of the contradiction separation algorithm based on optimized deduction
path, which is able to increase the deduction usage of original clauses.

Internally CSE 1.4 works only with clausal normal form. The E prover [78] is adopted with
thanks for clausification of full first-order logic problems during preprocessing.

Strategies

CSE 1.4 inherited most of the strategies in CSE 1.3. The main new strategies are:

• Deduction control strategy. Dynamically evaluate the complexity of deduction based on
the unified clause structure.

• CSCs control strategy. Evaluate whether the CSC generated in the deduction process are
retained according its term structure.

• Clause selection strategy. Select di↵erent types of clauses to participate in S-CS deduction
according to the dynamic sorting method.

Implementation

CSE 1.4 is implemented mainly in C++, and Java is used for batch problem running im-
plementation. A shared data structure is used for constants and shared variables storage. In
addition, special data structure is designed for property description of clause, literal and term,
so that it can support the multiple strategy mode. E prover is used for clausification of FOF
problems, and then TPTP4X is applied to convert the CNF format into TPTP format.
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Expected Competition Performance

CSE 1.4 has made some improvements compared to CSE 1.3, and so we expect a better
performance in this year’s competition.

Acknowledgement: Development of CSE 1.4 has been partially supported by the National
Natural Science Foundation of China (NSFC) (Grant No.61673320) and The General Research
Project of Jiangxi Education Department (Grant No. GJJ200818).

7.2 CSE E 1.3

Peiyao Liu
Southwest Jiaotong University, China

Architecture

CSE E 1.3 is an automated theorem prover for first-order logic, combining CSE-F 1.0 and
E 2.5, where CSE-F is based on the Contradiction Separation Based Dynamic Multi-Clause
Synergized Automated Deduction (S-CS) [147] and E is mainly based on superposition. The
combination mechanism is like this: E and CSE-F are applied to the given problem sequentially.
If either prover solves the problem, then the proof process completes. If neither CSE-F nor E
can solve the problem, some inferred clauses with no more than two literals, especially unit
clauses, from CSE-F are fed to E as lemmas, along with the original clauses, for further proof
search. This kind of combination is expected to take advantage of both CSE-F and E, and
produce a better performance. Concretely, CSE-F is able to generate a good number of unit
clauses, based on the fact that unit clauses are helpful for proof search and equality handling.
On the other hand, E has a good ability on equality handling.

Strategies

The CSE-F part of CSE E 1.3 uses almost the same strategies as in the CSE-F 1.0 stan-
dalone, e.g., clause/literal selection, strategy selection, and CSC strategy. The only di↵erence
is that equality handling strategies of CSE-F part of the combined system are blocked. The
main new strategies for the combined systems are:

• Lemma filtering mainly based on deduction weight of binary clauses.

• Fine-grained dynamic time allocation scheme in di↵erent run stages.

Implementation

CSE E 1.3 is implemented mainly in C++, and Java is used for batch problem running
implementation. The job dispatch between CSE-F and E is implemented in C++.
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Expected Competition Performance

We expect CSE E 1.3 to solve some hard problems that E cannot solve and have a satisfying
performance.

Acknowledgement: Development of CSE-F 1.0 has been partially supported by the National
Natural Science Foundation of China (NSFC) (Grant No.61673320). Acknowledgements to
Prof. Stephan Schulz for his kind permission on using his E prover that makes CSE E possible.

7.3 CSE-F 1.0

Peiyao Liu
Southwest Jiaotong University, China

Architecture

CSE-F 1.0 is an automated theorem prover for first-order logic without equality mainly
based on a novel inference mechanism, called as Contradiction Separation Based Dynamic
Multi-Clause Synergized Automated Deduction (S-CS) [147], which is able to handle multiple
(two or more) clauses dynamically in a synergized way in one deduction step, while binary
resolution is its special case.

CSE-F 1.0 is the successor of CSE 1.3, and retains the advantages of CSE 1.3. At the
same time, it has improved the deduction framework, and implements a new S-CS inference
algorithm. With this new inference algorithm, binary clauses are fully used until no binary
clause is added to the contradiction during each deduction epoch, given the fact that unit
clauses are helpful for proof search. Based on this, CSE-F 1.0 can solve some hard problems
that CSE 1.3 cannot.

CSE-F 1.0 also adopts conventional factoring, equality resolution (ER rule), and variable
renaming. Some pre-processing techniques, including pure literal deletion and simplification
based on the distance to the goal clause, and a number of standard redundancy criteria for
pruning the search space: tautology deletion, subsumption (forward and backward) are applied
as well.

Internally, CSE-F 1.0 works only with clausal normal form. The E prover [78] is adopted
with thanks for clausification of full first-order logic problems during preprocessing.

Strategies

CSE-F 1.0 inherited most of the strategies in CSE 1.3. It introduces some new strategies as
well, e.g., pre-processing, clause (literal) selection and clause filtering. At the same time, some
strategies in CSE 1.3 were optimized. The main new strategies are:

• Pre-processing strategy. Mark clauses containing independent literals that can form com-
plementary pairs with certain unit clause for subsequent pre-processing.

• Clause(literal) selection strategy. This strategy mainly considers the comprehensive weight
involving complexity, function nesting level, deduction distance of clause(literal).

• Clause filtering strategy. Filter out the binary clauses that do not meet deduction condi-
tions.
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The main optimized strategies include:

• Clause deduction distance. Dynamically update clause deduction distance in the process
of constructing contradictions in order to better guide selection of clauses, rather than
just as a pre-processing strategy.

• Contradiction separation clause (CSC) strategy. Strictly limit the number of literals in
CSC. Initially limit the number of literals in CSC to zero, and gradually expand the
number of literals in CSC during the deduction process.

Implementation

CSE-F 1.0 is implemented mainly in C++, and Java is used for batch problem running
implementation. A shared data structure is used for constants and shared variables storage. In
addition, special data structure is designed for property description of clause, literal and term,
so that it supports multiple strategy mode. E prover is used for clausification of FOF problems,
and then TPTP4X is applied to convert the CNF format into TPTP format.

Expected Competition Performance

CSE-F 1.0 adopts a new algorithm framework, and so we expect a better performance than
CSE 1.3 in this year’s competition.

Acknowledgement: Development of CSE-F 1.0 has been partially supported by the National
Natural Science Foundation of China (NSFC) (Grant No.61673320).

7.4 cvc5 1.0

Andrew Reynolds
University of Iowa, USA

Architecture

cvc5 is the successor of CVC4 [6]. It is an SMT solver based on the CDCL(T) architecture
[53] that includes built-in support for many theories, including linear arithmetic, arrays, bit
vectors, datatypes, finite sets and strings. It incorporates approaches for handling universally
quantified formulas. For problems involving free function and predicate symbols, cvc5 primarily
uses heuristic approaches based on conflict-based instantiation and E-matching for theorems,
and finite model finding approaches for non-theorems.

Like other SMT solvers, cvc5 treats quantified formulas using a two-tiered approach. First,
quantified formulas are replaced by fresh Boolean predicates and the ground theory solver(s)
are used in conjunction with the underlying SAT solver to determine satisfiability. If the prob-
lem is unsatisfiable at the ground level, then the solver answers “unsatisfiable”. Otherwise,
the quantifier instantiation module is invoked, and will either add instances of quantified for-
mulas to the problem, answer “satisfiable”, or return unknown. Finite model finding in cvc5
targets problems containing background theories whose quantification is limited to finite and
uninterpreted sorts. In finite model finding mode, cvc5 uses a ground theory of finite cardinal-
ity constraints that minimizes the number of ground equivalence classes, as described in [64].
When the problem is satisfiable at the ground level, a candidate model is constructed that
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contains complete interpretations for all predicate and function symbols. It then adds instances
of quantified formulas that are in conflict with the candidate model, as described in [65]. If no
instances are added, it reports “satisfiable”.

cvc5 has native support for problems in higher-order logic, as described in [5]. It uses a
pragmatic approach for HOL, where lambdas are eliminated eagerly via lambda lifting. The
approach extends the theory solver for quantifier-free uninterpreted functions (UF) and E-
matching. For the former, the theory solver for UF in cvc5 now handles equalities between
functions using an extensionality inference. Partial applications of functions are handle using
a (lazy) applicative encoding where some function applications are equated to the applicative
encoding. For the latter, several of the data structures for E-matching have been modified to
incorporate matching in the presence of equalities between functions, function variables, and
partial function applications.

Strategies

For handling theorems, cvc5 primarily uses conflict-based quantifier instantiation [63, 4], nu-
merative instantiation [62] and E-matching. vc5 uses a handful of orthogonal trigger selection
strategies for E-matching, nd several orthogonal ordering heuristics for enumerative instanti-
ation. For handling non-theorems, cvc5 primarily uses finite model finding techniques. Since
cvc5 with finite model finding is also capable of establishing unsatisfiability, it is used as a
strategy for theorems as well.

Implementation

cvc5 is implemented in C++. The code is available from

https://github.com/cvc5/cvc5

Expected Competition Performance

cvc5 has support for fine-grained proofs, which will be generated in solutions this year.
Due to performance overhead in generating proofs, we expect the performance of cvc5 to de-
grade slightly with respect to CVC4 last year. Otherwise, the first-order theorem proving and
finite model finding capabilities of cvc5 have undergone minor improvements, particularly to
enumerative instantiation. Hence, cvc5 will perform comparably to previous versions of CVC4.

7.5 Drodi 3.1.5

Oscar Contreras
Amateur programmer, Spain

Architecture

Drodi 3.1 is a very basic and lightweight automated theorem prover. It implements ordered
resolution and equality paramodulation inferences as well as demodulation and some other
standard simplifications. It also includes its own basic implementations of clausal normal form
conversion [54], AVATAR architecture with a SAT solver [142], Limited Resource Strategy [66],
discrimination trees as well as KBO, non recursive and lexicographic reduction orderings. Drodi
produces a (hopefully) verifiable proof in TPTP format.
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Strategies

Drodi 3.1 has a fair number of selectable strategies including, but not limited to, the fol-
lowing:

• Otter, Discount and Limited Resource Strategy [66] saturation algorithms.

• A basic implementation of AVATAR architecture [142].

• Several literal and term reduction orderings.

• Several literal selection options.

• Several clause selection heuristics with adjustable selection ratios, including several types
of clause weight queues and one age queue.

• Classical clause relevancy pruning.

• Drodi can generate a learning file from successful proofs and use the file to guide clause
selection strategy. It is based in the enhanced ENIGMA method. However, unlike
ENIGMA, the learning file is completely general and can be used with any kind of prob-
lems. This generality allows the use of the same learning file in both FOF and UEQ
CASC competition divisions.

Drodi’s integrated learning functions are a generalization of ENIGMA [39, 40]. It uses a gen-
eral learning file applicable to any kind of problems during CASC competition. Literal polarity,
equality, skolem and variable occurrences, are stored in clause feature vectors. Unlike ENIGMA,
instead of storing the specific functions and predicates themselves only the general properties
of functions and non equality predicates are stored in clause feature vectors. Predicates are
di↵erentiated from functions. In addition the following properties are also stored:

• Predicate or function is in the conjecture.

• Predicate or function is in the problem file but it is not in the conjecture.

• Predicate or function is only in axiom files.

Implementation

Drodi 3.1 is implemented in C. It includes discrimination trees and hashing indexing. All
the code is original, without special code libraries or code taken from other sources.

Expected Competition Performance

This is the first time that Drodi participates in CASC. It will enter the FOF and UEQ
divisions. Program tests with 2020 CASC-J10 problems indicate that Drodi will score in the
second half of the score table, probably in the last or next to last position.
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7.6 E 2.5

Stephan Schulz
DHBW Stuttgart, Germany

Architecture

E 2.5pre [74, 78, 79] is a purely equational theorem prover for many-sorted first-order logic
with equality. It consists of an (optional) clausifier for pre-processing full first-order formulae
into clausal form, and a saturation algorithm implementing an instance of the superposition
calculus with negative literal selection and a number of redundancy elimination techniques. E
is based on the DISCOUNT-loop variant of the given-clause algorithm, i.e., a strict separation
of active and passive facts. No special rules for non-equational literals have been implemented.
Resolution is e↵ectively simulated by paramodulation and equality resolution. As of E 2.1,
PicoSAT [16] can be used to periodically check the (on-the-fly grounded) proof state for propo-
sitional unsatisfiability.

For the LTB divisions, a control program uses a SInE-like analysis to extract reduced ax-
iomatizations that are handed to several instances of E. E will not use on-the-fly learning this
year.

Strategies

Proof search in E is primarily controlled by a literal selection strategy, a clause selection
heuristic, and a simplification ordering. The prover supports a large number of pre-programmed
literal selection strategies. Clause selection heuristics can be constructed on the fly by combining
various parameterized primitive evaluation functions, or can be selected from a set of predefined
heuristics. Clause evaluation heuristics are based on symbol-counting, but also take other clause
properties into account. In particular, the search can prefer clauses from the set of support,
or containing many symbols also present in the goal. Supported term orderings are several
parameterized instances of Knuth-Bendix-Ordering (KBO) and Lexicographic Path Ordering
(LPO), which can be lifted in di↵erent ways to literal orderings.

For CASC-J10, E implements a strategy-scheduling automatic mode. The total CPU time
available is broken into several (unequal) time slices. For each time slice, the problem is classified
into one of several classes, based on a number of simple features (number of clauses, maximal
symbol arity, presence of equality, presence of non-unit and non-Horn clauses, possibly presence
of certain axiom patterns, ...). For each class, a schedule of strategies is greedily constructed
from experimental data as follows: The first strategy assigned to a schedule is the the one
that solves the most problems from this class in the first time slice. Each subsequent strategy
is selected based on the number of solutions on problems not already solved by a preceding
strategy.

About 130 di↵erent strategies have been thoroughly evaluated on all untyped first-order
problems from TPTP 7.3.0. We have also explored some parts of the heuristic parameter space
with a short time limit of 5 seconds. This allowed us to test about 650 strategies on all TPTP
problems, and an extra 7000 strategies on UEQ problems from TPTP 7.2.0. About 100 of these
strategies are used in the automatic mode, and about 450 are used in at least one schedule.
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Implementation

E is build around perfectly shared terms, i.e. each distinct term is only represented once
in a term bank. The whole set of terms thus consists of a number of interconnected directed
acyclic graphs. Term memory is managed by a simple mark-and-sweep garbage collector. Un-
conditional (forward) rewriting using unit clauses is implemented using perfect discrimination
trees with size and age constraints. Whenever a possible simplification is detected, it is added
as a rewrite link in the term bank. As a result, not only terms, but also rewrite steps are
shared. Subsumption and contextual literal cutting (also known as subsumption resolution) is
supported using feature vector indexing [77]. Superposition and backward rewriting use fin-
gerprint indexing [76], a new technique combining ideas from feature vector indexing and path
indexing. Finally, LPO and KBO are implemented using the elegant and e�cient algorithms
developed by Bernd Löchner in [47, 48]. The prover and additional information are available at

https://www.eprover.org

Expected Competition Performance

The inference core of E 2.5pre has been slightly modified since last years pre-release. We
have also been able to evaluate some more di↵erent search strategies. As a result, we expect
performance to be somewhat better than in the last years, especially in UEQ. The system is
expected to perform well in most proof classes, but will at best complement top systems in the
disproof classes.

7.7 E 2.6

Stephan Schulz
DHBW Stuttgart, Germany

Architecture

E [74, 78, 79] is a purely equational theorem prover for many-sorted first-order logic with
equality, with some extensions for higher-order logic. It consists of an (optional) clausifier for
pre-processing full first-order formulae into clausal form, and a saturation algorithm imple-
menting an instance of the superposition calculus with negative literal selection and a num-
ber of redundancy elimination techniques. E is based on the DISCOUNT-loop variant of the
given-clause algorithm, i.e., a strict separation of active and passive facts. No special rules for
non-equational literals have been implemented. Resolution is e↵ectively simulated by paramod-
ulation and equality resolution. As of E 2.1, PicoSAT [16] can be used to periodically check
the (on-the-fly grounded) proof state for propositional unsatisfiability. For the LTB divisions,
a control program uses a SInE-like analysis to extract reduced axiomatizations that are handed
to several instances of E. E will not use on-the-fly learning this year.

Strategies

Proof search in E is primarily controlled by a literal selection strategy, a clause selection
heuristic, and a simplification ordering. The prover supports a large number of pre-programmed
literal selection strategies. Clause selection heuristics can be constructed on the fly by combining
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various parameterized primitive evaluation functions, or can be selected from a set of predefined
heuristics. Clause evaluation heuristics are based on symbol-counting, but also take other clause
properties into account. In particular, the search can prefer clauses from the set of support,
or containing many symbols also present in the goal. Supported term orderings are several
parameterized instances of Knuth-Bendix-Ordering (KBO) and Lexicographic Path Ordering
(LPO), which can be lifted in di↵erent ways to literal orderings.

For CASC-28, E implements a strategy-scheduling automatic mode. The total CPU time
available is broken into several (unequal) time slices. For each time slice, the problem is classified
into one of several classes, based on a number of simple features (number of clauses, maximal
symbol arity, presence of equality, presence of non-unit and non-Horn clauses, possibly presence
of certain axiom patterns...). For each class, a schedule of strategies is greedily constructed from
experimental data as follows: The first strategy assigned to a schedule is the the one that solves
the most problems from this class in the first time slice. Each subsequent strategy is selected
based on the number of solutions on problems not already solved by a preceding strategy.

About 140 di↵erent strategies have been thoroughly evaluated on all untyped first-order
problems from TPTP 7.3.0. We have also explored some parts of the heuristic parameter space
with a short time limit of 5 seconds. This allowed us to test about 650 strategies on all TPTP
problems, and an extra 7000 strategies on UEQ problems from TPTP 7.2.0. About 100 of these
strategies are used in the automatic mode, and about 450 are used in at least one schedule.

Implementation

E is build around perfectly shared terms, i.e. each distinct term is only represented once
in a term bank. The whole set of terms thus consists of a number of interconnected directed
acyclic graphs. Term memory is managed by a simple mark-and-sweep garbage collector. Un-
conditional (forward) rewriting using unit clauses is implemented using perfect discrimination
trees with size and age constraints. Whenever a possible simplification is detected, it is added
as a rewrite link in the term bank. As a result, not only terms, but also rewrite steps are
shared. Subsumption and contextual literal cutting (also known as subsumption resolution) is
supported using feature vector indexing [77]. Superposition and backward rewriting use fin-
gerprint indexing [76], a new technique combining ideas from feature vector indexing and path
indexing. Finally, LPO and KBO are implemented using the elegant and e�cient algorithms
developed by Bernd Löchner in [47, 48]. The prover and additional information are available at

https://www.eprover.org

Expected Competition Performance

The inference core of E 2.6 has been slightly modified since last year. We have also been
able to evaluate some more di↵erent search strategies. As a result, we expect performance to be
somewhat better than in the last years, especially in UEQ. The system is expected to perform
well in most proof classes, but will at best complement top systems in the disproof classes.
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7.8 Ehoh 2.7

Petar Vukmirović
Vrije Universiteit Amsterdam, The Netherlands

Architecture

Ehoh is a higher-order superposition-based theorem prover implementing lambda-free higher-
order superposition [7]. Recently, Ehoh has been extended to support not only lambda-free,
but full higher-order syntax. Internally, Ehoh unfolds all definitions of predicate symbols, lifts
lambdas and removes all Boolean subterms through a FOOL-like [44] preprocessing transfor-
mation. After these steps are performed, the problem lies in the lambda-free fragment and the
standard lambda-free superposition applies. Ehoh also supports TFX $ite and $let syntax.
On the reasoning side, modest additions to the calculus have been made: We implemented rules
NegExt, PosExt and Ext-* family of rules described by Bentkamp et al. [8]. Full support for
lambda-terms and calculus-level treatment of Boolean terms is expected in the next version of
Ehoh.

Strategies

The system uses exactly the same portfolio of strategies as E 2.7, with the only di↵erence
that rules NegExt, PosExt and Ext-* family rules are turned on regardless of the chosen strategy.

Implementation

Ehoh 2.7 shares the codebase of E 2.7: It is a version of E prover compiled with compile-time
option ENABLE LFHO enabled. Ehoh is available from

https://github.com/eprover/eprover

which includes more details on Ehoh’s compilation and installation.

Expected Competition Performance

The prover is expected to have poor performance on THF problems, slightly worse than
CVC4 1.8. On SLH problems, it is expected to perform better, on a par with Zipperposition.

7.9 Etableau 0.67

John Hester
University of Florida, USA

Architecture

Etableau is a theorem prover for first order logic based on combining the strong connection
calculus and the superposition calculus. Etableau centers the idea of local variables in tableau
proof search. Branches that are local (contain only local variables) are sent to the core proof
procedure of E. Saturating along branches allows the automatic generation of unit lemmata.
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Strategies

Etableau uses a depth first branch selection function, and maintains a small number of dis-
tinct tableaux in memory simultaneously. During superposition proof search on local branches,
E’s “–auto” mode is used. Etableau can backtrack when proof search fails, and remembers
previous attempts at using superposition search on branches so that the search does not have
to repeat itself.

Implementation

Etableau is implemented in C and compiled alongside E, using E as a library and orthogonal
prover. This allows Etableau to use the clause and formula datatypes of E, facilitating directly
calling the proof search functions of E with clauses from the tableau rather than starting a
new process for every time an attempt to saturate a branch is made. Etableau also uses the
clausification and preprocessing of E. Etableau can be obtained from

https://github.com/hesterj/Etableau

Expected Competition Performance

Etableau will solve fewer problems than E, but may solve some that others cannot. Etableau
will solve significantly more problems than last year.

7.10 GKC 0.7

Tanel Tammet
Tallinn University of Technology, Estonia

Architecture

GKC [138] is a resolution prover optimized for search in large knowledge bases. It is used
as a foundation (GK Core) for building a common-sense reasoner GK. In particular, GK can
handle inconsistencies and perform probabilistic and nonmonotonic reasoning, see [139]. We
envision natural language question answering systems as the main potential application for
these specialized methods.

The WASM version of the previous GKC 0.6 is used as the prover engine in the educa-
tional ¡A HREF=“http://logictools.org”¿http://logictools.org¡/A¿ system. It can read
and output proofs in the TPTP, simplified TPTP and JSON format, the latter compatible with
JSON-LD, see [140].

These standard inference rules have been implemented in GKC:

• Binary resolution with optionally the set of support strategy, negative or positive ordered
resolution or unit restriction.

• Hyperresolution.

• Factorization.

• Paramodulation and demodulation with the Knuth-Bendix ordering.

GKC does not currently implement any propositional inferences or instance generation. It
only looks for proofs and does not try to show non-provability.
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Strategies

GKC uses multiple strategies run sequentially, with the time limit starting at 0.1 seconds for
each, increased 10 or 5 times once the whole batch has been performed. The strategy selections
takes into consideration the basic properties of the problem: the presence of equality and the
approximate size of the problem.

We perform the selection of a given clause by using several queues in order to spread the
selection relatively uniformly over these categories of derived clauses and their descendants:
axioms, external axioms, assumptions and goals. The queues are organized in two layers. As a
first layer we use the common ratio-based algorithm of alternating between selecting n clauses
from a weight-ordered queue and one clause from the FIFO queue with the derivation order.
As a second layer we use four separate queues based on the derivation history of a clause. Each
queue in the second layer contains the two sub-queues of the first layer.

Implementation

GKC is implemented in C. The data representation machinery is built upon a shared memory
graph database Whitedb enabling it to solve multiple di↵erent queries in parallel processeses
without a need to repeatedly parse or load the large parsed knowledge base from the disk. An
interesting aspect of GKC is the pervasive use of hash indexes, feature vectors and fingerprints,
while no tree indexes are used.

GKC can be obtained from

https://github.com/tammet/gkc/

Expected Competition Performance

Compared to the performance in previous CASC, GKC 0.7 should perform somewhat bet-
ter. In particular, more search strategies have been implemented and the selection of search
strategies is wider and more varied. The core algorithms and data structures remain the same.
We expect GKC to be in the middle of the final ranking for FOF and below the average in
UEQ and LTB. We expect GKC to perform well on very large problems.

7.11 iProver 3.5

Konstantin Korovin
University of Manchester, United Kingdom

Architecture

iProver interleaves instantiation calculus Inst-Gen [43, 42, 26] with ordered resolution and
superposition calculi [22]. iProver approximates first-order clauses using propositional ab-
stractions which are solved using MiniSAT [25] and refined using model-guided instantia-
tions. iProver also implements a general abstraction-refinement framework for under-and over-
approximations of first-order clauses [31, 32]. First-order clauses are exchanged between calculi
during the proof search.

Recent features in iProver include:

• AC joinability and AC normalisation [23].
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• Support for quantified linear and non-linear arithmetic.

• Superposition calculus with simplifications including: demodulation, light normalisation,
subsumption, subsumption resolution and global subsumption. iProver’s simplification
set up [22] is tunable via command line options and generalises common architectures
such as Discount or Otter.

• HOS-ML framework for learning heuristics using combination of hyper-parameter opti-
misation and dynamic clustering together with schedule optimisation using constraint
solving [37, 36]

Strategies

iProver has around 100 options to control the proof search including options for literal se-
lection, passive clause selection, frequency of calling the SAT solver, simplifications and options
for combination of instantiation with resolution and superposition. For the competition HOS-
ML [37] was used to build a multi-core schedule from heuristics learnt over a sample of FOF
problems.

Implementation

iProver is implemented in OCaml and for the ground reasoning uses MiniSat [25] and Z3
[21]. iProver accepts FOF, TFF and CNF formats. Vampire [45, 33] and E prover [78] are used
for proof-producing clausification of FOF/TFF problems. Vampire is also used for SInE axiom
selection [35] in the LTB division. iProver is available at:

http://www.cs.man.ac.uk/~korovink/iprover/

Expected Competition Performance

We expect improvement in performance compared to the previous year due to improvements
in superposition, AC reasoning, simplifications and heuristic selection. Heuristic tuning is still
work in progress and in particular we reused heuristics trained for FOF in the LTB division
which might be not ideal as the nature of the problems is quite di↵erent.

7.12 JavaRes 1.3.0

Adam Pease
Articulate Software, USA

Architecture

JavaRes is a simple, resolution-based theorem prover, primarily created for teaching theo-
rem proving. It implements the basic calculus from Robinson’s seminal paper [67], extended
with negative literal selection and some redundancy elimination as described by Bachmair and
Ganziner [3]. The core is a given-clause based clausal saturation algorithm. The system also
supports full first-order input via clausification, and equality handling via automatic addition
of equality axioms.
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Strategies

JavaRes includes all the optimization strategies in PyRes. For clause selection it implements
two methods, which are combined. The most basic is a first-in-first-out (FIFO) strategy that
will eventually try every clause. A symbol-counting strategy picks the clause with the fewest
symbols. This results in a strong bias to smaller clauses while ensuring that all clauses will
eventually be tried. JavaRes supports indexing for subsumption and resolution. Subsumption
removes clauses from the set of clauses to be processed (called “forward subsumption”) and
from the set already processed (”backwards subsumption”) thereby decreasing the problem
search space. More general clauses subsume more specific ones. Indexing is used and employs
records with signs and predicate symbols only, so that potential clauses can be accepted or
rejected more rapidly than attempting unification. JavaRes also implements PyRes’ approach
to literal selection. Largest literal selection is the default strategy. For large theories, JavaRes
has implemented the SInE algorithm [35] although performance on the LTB problems is so
poor for this simple prover, compared to modern provers such as E and Vampire that we do
not enter JavaRes in that division.

Implementation

JavaRes is largely a re-implementation of PyRes, but in Java, and with additional features
that are not part of the core inference algorithm. Additional features include implementation of
SInE, parsing of SUO-KIF syntax, graphical proof output using GraphViz. The implementation
is designed to be straightforward and doesn’t include any of the newer Java language features
such as lambda expressions. It is available from

https://github.com/ontologyportal/JavaRes

Expected Competition Performance

JavaRes is faster than PyRes simply due to the implementation language. It solves a few
more problems than PyRes but is significantly faster on problems that both provers solve. It
is inferior compared to most modern superposition-based provers. It is expected to perform
reasonably well on problems without equality.

7.13 LEO-II 1.7.0

Alexander Steen
University of Luxembourg, Luxembourg

Architecture

LEO-II [11], the successor of LEO [10], is a higher-order ATP system based on extensional
higher-order resolution. More precisely, LEO-II employs a refinement of extensional higher-
order RUE resolution [9]. LEO-II is designed to cooperate with specialist systems for fragments
of higher-order logic. By default, LEO-II cooperates with the first-order ATP system E [73].
LEO-II is often too weak to find a refutation amongst the steadily growing set of clauses on its
own. However, some of the clauses in LEO-II’s search space attain a special status: they are
first-order clauses modulo the application of an appropriate transformation function. Therefore,
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LEO-II launches a cooperating first-order ATP system every n iterations of its (standard)
resolution proof search loop (e.g., 10). If the first-order ATP system finds a refutation, it
communicates its success to LEO-II in the standard SZS format. Communication between
LEO-II and the cooperating first-order ATP system uses the TPTP language and standards.

Strategies

LEO-II employs an adapted “Otter loop”. Moreover, LEO-II uses some basic strategy
scheduling to try di↵erent search strategies or flag settings. These search strategies also include
some di↵erent relevance filters.

Implementation

LEO-II is implemented in OCaml 4, and its problem representation language is the TPTP
THF language [12]. In fact, the development of LEO-II has largely paralleled the development
of the TPTP THF language and related infrastructure [125]. LEO-II’s parser supports the
TPTP THF0 language and also the TPTP languages FOF and CNF.

Unfortunately the LEO-II system still uses only a very simple sequential collaboration model
with first-order ATPs instead of using the more advanced, concurrent and resource-adaptive
OANTS architecture [13] as exploited by its predecessor LEO.

The LEO-II system is distributed under a BSD style license, and it is available from

http://www.leoprover.org

Expected Competition Performance

LEO-II is not actively being developed anymore, hence there are no expected improvements
to last year’s CASC results.

7.14 Leo-III 1.6

Alexander Steen
University of Luxembourg, Luxembourg

Architecture

Leo-III [81], the successor of LEO-II [11], is a higher-order ATP system based on extensional
higher-order paramodulation with inference restrictions using a higher-order term ordering. The
calculus contains dedicated extensionality rules and is augmented with equational simplification
routines that have their intellectual roots on first-order superposition-based theorem proving.
The saturation algorithm is a variant of the given clause loop procedure inspired by the first-
order ATP system E.

Leo-III cooperates with external first-order ATPs which are called asynchronously during
proof search; a focus is on cooperation with systems that support typed first-order (TFF)
input. For this year’s CASC, CVC4 [6] and E [74, 78] are used as external systems. However,
cooperation is in general not limited to first-order systems. Further TPTP/TSTP-compliant
external systems (such as higher-order ATPs or counter model generators) may be included
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using simple command-line arguments. If the saturation procedure loop (or one of the external
provers) finds a proof, the system stops, generates the proof certificate and returns the result.

For the LTB division, Leo-III is augmented by an external Python3 driver which schedules
Leo-III on the batches.

Strategies

Leo-III comes with several configuration parameters that influence its proof search by apply-
ing di↵erent heuristics and/or restricting inferences. These parameters can be chosen manually
by the user on start-up. Leo-III implements a naive time slicing approach of some of these
strategies since last CASC.

Implementation

Leo-III utilizes and instantiates the associated LeoPARD system platform [146] for higher-
order (HO) deduction systems implemented in Scala (currently using Scala 2.13 and running on
a JVM with Java 8). The prover makes use of LeoPARD’s data structures and implements its
own reasoning logic on top. A hand-crafted parser is provided that supports all TPTP syntax
dialects. It converts its produced concrete syntax tree to an internal TPTP AST data structure
which is then transformed into polymorphically typed lambda terms. As of version 1.1, Leo-
III supports all common TPTP dialects (CNF, FOF, TFF, THF) as well as its polymorphic
variants [18, 41].

The term data structure of Leo-III uses a polymorphically typed spine term representation
augmented with explicit substitutions and De Bruijn-indices. Furthermore, terms are perfectly
shared during proof search, permitting constant-time equality checks between alpha-equivalent
terms.

Leo-III’s saturation procedure may at any point invoke external reasoning tools. To that
end, Leo-III includes an encoding module that translates (polymorphic) higher-order clauses to
polymorphic and monomorphic typed first-order clauses, whichever is supported by the external
system. While LEO-II relied on cooperation with untyped first-order provers, Leo-III exploits
the native type support in first-order provers (TFF logic) for removing clutter during translation
and, in turn, higher e↵ectivity of external cooperation.

Leo-III is available on GitHub:

https://github.com/leoprover/Leo-III

Expected Competition Performance

Version 1.6 only marginally improves the previous release by fixing some bugs; also the old
(and very slow) ANTLR-based parser was replaced by a new (hand-crafted) TPTP parser. As
CASC is using wall clock (WC) time instead of CPU time usage in all divisions (except for
SLH), the Java VM version of Leo-III is used in the competition (as opposed to a native build
used last year). We hope that the JRE performs - after a slow start-up - quite well on longer
runs (wrt. WC time). We do not expect Leo-III to be competitive in the SLH division as it
imposes strong CPU time limits that Leo-III’s JRE will quickly exceed. For LTB and THF, we
expect a similar performance as in last year’s CASC.

In the LTB mode, Leo-III is testing a preliminary SinE-based axiom selection. Stemming
from Leo-III’s support for polymorphic HOL reasoning, we expect a reasonable performance.
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On the other hand Leo-III’s performance for reasoning with a large number of axioms is quite
poor. Leo-III’s LTB mode does not do any learning and/or analysis of the learning samples.

7.15 Prover9 1109a

Bob Vero↵ on behalf of William McCune
University of New Mexico, USA

Architecture

Prover9, Version 2009-11A, is a resolution/paramodulation prover for first-order logic with
equality. Its overall architecture is very similar to that of Otter-3.3 [51]. It uses the “given clause
algorithm”, in which not-yet-given clauses are available for rewriting and for other inference
operations (sometimes called the “Otter loop”).

Prover9 has available positive ordered (and nonordered) resolution and paramodulation,
negative ordered (and nonordered) resolution, factoring, positive and negative hyperresolution,
UR-resolution, and demodulation (term rewriting). Terms can be ordered with LPO, RPO, or
KBO. Selection of the “given clause” is by an age-weight ratio.

Proofs can be given at two levels of detail: (1) standard, in which each line of the proof
is a stored clause with detailed justification, and (2) expanded, with a separate line for each
operation. When FOF problems are input, proof of transformation to clauses is not given.

Completeness is not guaranteed, so termination does not indicate satisfiability.

Strategies

Prover9 has available many strategies; the following statements apply to CASC.
Given a problem, Prover9 adjusts its inference rules and strategy according to syntactic

properties of the input clauses such as the presence of equality and non-Horn clauses. Prover9
also does some preprocessing, for example, to eliminate predicates.

For CASC Prover9 uses KBO to order terms for demodulation and for the inference rules,
with a simple rule for determining symbol precedence.

For the FOF problems, a preprocessing step attempts to reduce the problem to independent
subproblems by a miniscope transformation; if the problem reduction succeeds, each subproblem
is clausified and given to the ordinary search procedure; if the problem reduction fails, the
original problem is clausified and given to the search procedure.

Implementation

Prover9 is coded in C, and it uses the LADR libraries. Some of the code descended from EQP
[50]. (LADR has some AC functions, but Prover9 does not use them). Term data structures
are not shared (as they are in Otter). Term indexing is used extensively, with discrimination
tree indexing for finding rewrite rules and subsuming units, FPA/Path indexing for finding
subsumed units, rewritable terms, and resolvable literals. Feature vector indexing [75] is used
for forward and backward nonunit subsumption. Prover9 is available from

http://www.cs.unm.edu/~mccune/prover9/

31



CASC-28 Geo↵ Sutcli↵e

Expected Competition Performance

Prover9 is the CASC fixed point, against which progress can be judged. Each year it is
expected do worse than the previous year, relative to the other systems.

7.16 RPx 1.0

Anders Schlichtkrull
Aalborg University Copenhagen, Denmark

Architecture

RPx 1.0 [70, 68] implements the nondeterministic ordered resolution prover by Bachmair
and Ganzinger [3]. It therefore uses their ordered resolution rule together with their definitions
of tautology deletion, subsumption rules and reduction rules. The ordered resolution rule is
restricted to binary resolution.

Strategies

The prover loop is loosely modelled after the one described by Voronkov [142]. It applies
the ordered resolution rule together with tautology deletion, subsumption and reduction. This
strategy is applied to all problems.

Implementation

The prover is built in Isabelle/HOL [RPXISA] as a data refinement from the calculus down
to a fully executable program. This goes through the following refinement layers: (1) the
nondeterministic ordered resolution prover by Bachmair and Ganzinger [72, 71, 69, 3], (2) a
nondeterministic ordered resolution prover that enforces fairness, (3) a deterministic prover that
represents clauses and the clauses database as lists, and commits to a strategy for assigning
priorities to clauses, and (4) a fully executable program with a concrete datatype for atoms
and executable definitions for most general unifiers, clause subsumption, and the order on
atoms. Each layer’s prover’s soundness and completeness are proved by a refinement from the
soundness and completeness of the previous layer. From the fourth layer Standard ML code is
extracted using Isabelle’s code generator [30]. The fourth layer uses several formalizations from
IsaFoR [82, 141]. RPx employs the TPTP parser and clausifier of Metis [38]. Coupling Metis
and the generated RPX code together required a simple conversion between their very similar
datatypes for clauses. To be able to solve problems with equality in the competition, RPx uses
a script written by Geo↵ Sutcli↵e that uses the TPTP4X tool to add the axioms of equality
into problems with equality. RPx is available at

https://github.com/anderssch/RPx

Expected Competition Performance

RPx competes in the divisions FOF and FNT. RPx uses a magnificent calculus but the data
structures are mediocre. A benchmark done when developing RPx concluded that it is not a
competitive prover. This was concluded by comparing its performance with that of Vampire,
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E and Metis. Vampire and E were far ahead. Metis also performed better, but by a smaller
margin [70].

7.17 SATCoP 0.1

Michael Rawson
University of Manchester, United Kingdom

Architecture

SATCoP 0.1 [56] implements a typical connection-tableau system with a SAT twist: first-
order clauses (partially) instantiated while building tableaux are continuously grounded and
fed to a boolean satisfiability routine. When the growing set of propositional clauses becomes
unsatisfiable, we have found a proof. In the meantime, ground information can influence search.
Satisfying assignments focus SATCoP somewhat: goal literals are only attempted if their ground
abstraction is assigned true. Ground information can also be used to control a combination of
pseudo-random shu✏ing and iterative deepening. We note that this system has been developed
slightly since [56]: the system is very new and there are still many directions and optimisations
to explore.

Strategies

There are no specially-designed strategies in SATCoP. However, some parts of the system
employ a pseudo-random number generator (PRNG), which can change proof search signifi-
cantly. Therefore, to make use of multiple cores, we launch an appropriate number of threads,
each using a di↵erent seed for their PRNG. Each thread runs to the time limit uninterrupted

Implementation

The system is implemented compactly in a few thousand lines of Rust. The internal SAT
routine is by far the biggest bottleneck: we first try cheap stochastic local search, then fall back
to PicoSAT [16] if we fail to find a satisfying assignment quickly.

See the website

https://github.com/MichaelRawson/satcop/

Expected Competition Performance

Based on the 2020 competition, we hope to prove at least 150 of the 2021 FOF problems.
SATCoP can in principle attempt unit equality problems, but is not very good at them. It
cannot show non-theorems, or deal with other logics.
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7.18 Twee 2.4

Nick Smallbone
Chalmers University of Technology, Sweden

Architecture

Twee [80] is a theorem prover for unit equality problems based on unfailing completion [2].
It implements a DISCOUNT loop, where the active set contains rewrite rules (and unorientable
equations) and the passive set contains critical pairs. The basic calculus is not goal-directed,
but Twee implements a transformation which improves goal direction for many problems.

Twee features ground joinability testing [49] and a connectedness test [1], which together
eliminate many redundant inferences in the presence of unorientable equations. The ground
joinability test performs case splits on the order of variables, in the style of [49], and discharges
individual cases by rewriting modulo a variable ordering.

Horn clauses are encoded as equations as described in [19]. For CASC, Twee accepts non-
Horn problems but throws away all the non-Horn clauses.

Strategies

Twee’s strategy is simple and it does not tune its heuristics or strategy based on the input
problem. The term ordering is always KBO; by default, functions are ordered by number of
occurrences and have weight 1. The proof loop repeats the following steps:

• Select and normalise the lowest-scored critical pair, and if it is not redundant, add it as
a rewrite rule to the active set.

• Normalise the active rules with respect to each other.

• Normalise the goal with respect to the active rules.

Each critical pair is scored using a weighted sum of the weight of both of its terms. Terms
are treated as DAGs when computing weights, i.e., duplicate subterms are only counted once
per term. The weights of critical pairs that correspond to Horn clauses are adjusted by the
heuristic described in [CS18], section 5.

For CASC, to take advantage of multiple cores, several versions of Twee run in parallel using
di↵erent parameters (e.g., with the goal-directed transformation on or o↵).

Implementation

Twee is written in Haskell. Terms are represented as array-based flatterms for e�cient
unification and matching. Rewriting uses a perfect discrimination tree. The passive set is
represented compactly (12 bytes per critical pair) by only storing the information needed to
reconstruct the critical pair, not the critical pair itself. Because of this, Twee can run for an
hour or more without exhausting memory.

Twee uses an LCF-style kernel: all rules in the active set come with a certified proof object
which traces back to the input axioms. When a conjecture is proved, the proof object is
transformed into a human-readable proof. Proof construction does not harm e�ciency because
the proof kernel is invoked only when a new rule is accepted. In particular, reasoning about
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the passive set does not invoke the kernel. The translation from Horn clauses to equations is
not yet certified.

Twee can be downloaded as open source from:

http://nick8325.github.io/twee

Expected Competition Performance

Twee is quite strong at UEQ, and ought to compete with the top provers. It should perform
better than last year, thanks to the goal-directed transformation mentioned above and some
other performance improvements. It may su↵er in COL (because its handling of existential
goals is mediocre) and in RNG (where many problems are best solved with LPO or RPO). As
Twee only supports Horn clauses it will do badly in FOF. It may get lucky and solve a few
hard problems, especially if some mostly-equational problems show up.

7.19 Vampire 4.5

Giles Reger
University of Manchester, United Kingdom

Architecture

Vampire [45] 4.5 is an automatic theorem prover for first-order logic with extensions to
theory-reasoning and higher-order logic. Vampire implements the calculi of ordered binary res-
olution and superposition for handling equality. It also implements the Inst-gen calculus and a
MACE-style finite model builder [59]. Splitting in resolution-based proof search is controlled by
the AVATAR architecture which uses a SAT or SMT solver to make splitting decisions [142, 57].
A number of standard redundancy criteria and simplification techniques are used for pruning
the search space: subsumption, tautology deletion, subsumption resolution and rewriting by or-
dered unit equalities. The reduction ordering is the Knuth-Bendix Ordering. Substitution tree
and code tree indexes are used to implement all major operations on sets of terms, literals and
clauses. Internally, Vampire works only with clausal normal form. Problems in the full first-
order logic syntax are clausified during preprocessing [60]. Vampire implements many useful
preprocessing transformations including the SinE axiom selection algorithm. When a theorem
is proved, the system produces a verifiable proof, which validates both the clausification phase
and the refutation of the CNF.

Strategies

Vampire 4.5 provides a very large number of options for strategy selection. The most
important ones are:

• Choices of saturation algorithm:
– Limited Resource Strategy [66]
– DISCOUNT loop
– Otter loop
– Instantiation using the Inst-Gen calculus
– MACE-style finite model building with sort inference

• Splitting via AVATAR [142]
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• A variety of optional simplifications.
• Parameterized reduction orderings.
• A number of built-in literal selection functions and di↵erent modes of comparing literals
[34].

• Age-weight ratio that specifies how strongly lighter clauses are preferred for inference
selection. This has been extended with a layered clause selection approach [27].

• Set-of-support strategy with extensions for theory reasoning.
• For theory-reasoning:

– Ground equational reasoning via congruence closure.
– Addition of theory axioms and evaluation of interpreted functions.
– Use of Z3 with AVATAR to restrict search to ground-theory-consistent splitting

branches [57].
– Specialised theory instantiation and unification [61].
– Extensionality resolution with detection of extensionality axioms

• For higher-order problems:
– Translation to polymorphic first-order logic using applicative form and combinators.
– A new superposition calculus [14] utilising a KBO-like ordering [15] for orienting

combinator equations. The calculus introduces an inference, narrow, for rewriting
with combinator equations.

– Proof search heuristics targeting the growth of clauses resulting from narrowing.
– An extension of unification with abstraction to deal with functional and boolean

extensionality.

• Various inferences to deal with booleans

Implementation

Vampire 4.5 is implemented in C++. It makes use of minisat and Z3. See the website

https://vprover.github.io

for more information and access to the GitHub repository.

Expected Competition Performance

There are four areas of improvement in Vampire 4.5. Firstly, a new layered clause selection
approach [27] gives Vampire more fine-grained control over clause selection, in particular the
way in which clauses involving theory axioms are selected. Secondly, theory evaluation and
instantiation methods have been overhauled. Thirdly, a new subsumption demodulation rule
[28] improves support for reasoning with conditional equalities. Finally, higher-order reasoning
(introduced in Vampire 4.4) has been rewritten based on a new superposition calculus [14]
utilising a KBO-like ordering [15] for orienting combinator equations. Vampire 4.5 should be
an improvement on Vampire 4.4.
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7.20 Vampire 4.6

Giles Reger
University of Manchester, United Kingdom

There are only small changes between Vampire 4.5 and Vampire 4.6 in the tracks relevant
to CASC. Most of our e↵orts have been spent on theory reasoning (which are not relevant as
TFA is not running) and e↵orts to parallelise Vampire which are too immature for CASC this
year. One significant engineering e↵ort has been to incorporate higher-order and polymorphic
reasoning into the “main branch” such that a single executable is used for all divisions.

Architecture

Vampire [45] is an automatic theorem prover for first-order logic with extensions to theory-
reasoning and higher-order logic. Vampire implements the calculi of ordered binary resolution
and superposition for handling equality. It also implements the Inst-gen calculus and a MACE-
style finite model builder [59]. Splitting in resolution-based proof search is controlled by the
AVATAR architecture which uses a SAT or SMT solver to make splitting decisions [142, 57].

A number of standard redundancy criteria and simplification techniques are used for pruning
the search space: subsumption, tautology deletion, subsumption resolution and rewriting by
ordered unit equalities. The reduction ordering is the Knuth-Bendix Ordering. Substitution
tree and code tree indexes are used to implement all major operations on sets of terms, literals
and clauses. Internally, Vampire works only with clausal normal form. Problems in the full
first-order logic syntax are clausified during preprocessing [60]. Vampire implements many
useful preprocessing transformations including the SinE axiom selection algorithm.

When a theorem is proved, the system produces a verifiable proof, which validates both the
clausification phase and the refutation of the CNF.

Strategies

Vampire 4.6 provides a very large number of options for strategy selection. The most
important ones are:

• Choices of saturation algorithm:
– Limited Resource Strategy [66]
– DISCOUNT loop
– Otter loop
– Instantiation using the Inst-Gen calculus
– MACE-style finite model building with sort inference

• Splitting via AVATAR [142]
• A variety of optional simplifications.
• Parameterized reduction orderings.
• A number of built-in literal selection functions and di↵erent modes of comparing literals
[34].

• Age-weight ratio that specifies how strongly lighter clauses are preferred for inference
selection. This has been extended with a layered clause selection approach [27].

• Set-of-support strategy with extensions for theory reasoning.
• For theory-reasoning:

– Ground equational reasoning via congruence closure.
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– Addition of theory axioms and evaluation of interpreted functions [58].
– Use of Z3 with AVATAR to restrict search to ground-theory-consistent splitting

branches [57].
– Specialised theory instantiation and unification [61].
– Extensionality resolution with detection of extensionality axioms

• For higher-order problems:

– Translation to polymorphic first-order logic using applicative form and combinators
– A superposition calculus [14] utilising a KBO-like ordering [15] for orienting com-

binator equations. The calculus introduces an inference, narrow, for rewriting with
combinator equations.

– Proof search heuristics targeting the growth of clauses resulting from narrowing.
– An extension of unification with abstraction to deal with functional and boolean

extensionality.
– Various inferences to deal with booleans

Implementation

Vampire 4.6 is implemented in C++. It makes use of minisat and z3. See the website for
more information and access to the GitHub repository:

https://vprover.github.io/

Expected Competition Performance

Vampire 4.6 should be roughly the same as Vampire 4.5.

7.21 Zipperposition 2.0

Petar Vukmirović
Vrije Universiteit Amsterdam, The Netherlands

Architecture

Zipperposition is a superposition-based theorem prover for typed first-order logic with equal-
ity and higher-order logic. It is a pragmatic implementation of a complete calculus for Boolean-
free higher-order logic [8]. It features a number of extensions that include polymorphic types;
user-defined rewriting on terms and formulas (“deduction modulo theories”); a lightweight vari-
ant of AVATAR for case splitting; boolean reasoning [145]. The core architecture of the prover
is based on saturation with an extensible set of rules for inferences and simplifications. Zipper-
position uses a recently developed full higher-order unification algorithm that enables e�cient
integration of procedures for decidable fragments of higher-order unification [144]. The initial
calculus and main loop were imitations of an old version of E [74], but there are many more
rules nowadays. A summary of the calculus for integer arithmetic and induction can be found
in [20].
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Strategies

The system uses various strategies in a portfolio. The strategies are run in parallel, making
use of all CPU cores available. We designed the portfolio of strategies by manual inspection of
di↵erent TPTP problems. Heuristics used in Zipperposition are inspired by e�cient heuristics
used in E. Portfolio mode di↵erentiates higher-order problems from the first-order ones. If
the problem is first-order all higher-order prover features are turned o↵. Other than that, the
portfolio is static and does not depend on the syntactic properties of the problem.

Implementation

The prover is implemented in OCaml, and has been around for eight years. Term indexing
is done using fingerprints for unification, perfect discrimination trees for rewriting, and feature
vectors for subsumption. Some inference rules such as contextual literal cutting make heavy use
of subsumption. For higher-order problems some strategies use E prover, running in lambda-free
higher-order mode, as an end-game backend prover. The code can be found at

https://github.com/sneeuwballen/zipperposition

and is entirely free software (BSD-licensed).
Zipperposition can also output graphic proofs using graphviz. Some tools to perform type

inference and clausification for typed formulas are also provided, as well as a separate library
for dealing with terms and formulas [20].

Expected Competition Performance

The prover is expected to have average performance on FOF, similar to Prover9, and a good
performance on THF, at the level of last-year’s CASC winner.

7.22 Zipperposition 2.1

Petar Vukmirović
Vrije Universiteit Amsterdam, The Netherlands

Architecture

Zipperposition is a superposition-based theorem prover for typed first-order logic with equal-
ity and for higher-order logic. It is a pragmatic implementation of a complete calculus for full
higher-order logic [7]. It features a number of extensions that include polymorphic types; user-
defined rewriting on terms and formulas (“deduction modulo theories”); a lightweight variant of
AVATAR for case splitting [24]; pragmatic boolean reasoning [145]. The core architecture of the
prover is based on saturation with an extensible set of rules for inferences and simplifications.
Zipperposition uses a full higher-order unification algorithm that enables e�cient integration
of procedures for decidable fragments of higher-order unification [144]. The initial calculus and
main loop were imitations of an old version of E [74]. With the implementation of higher-order
superposition, the main loop had to be adapted to deal with possibly infinite sets of unifiers
[143]. A summary of the calculus for integer arithmetic and induction can be found in [20].
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Strategies

The system uses various strategies in a portfolio. The strategies are run in parallel, making
use of all CPU cores available. We designed the portfolio of strategies by manual inspection of
di↵erent TPTP problems. Heuristics used in Zipperposition are inspired by e�cient heuristics
used in E. A detailed overview of various calculus extensions used by the strategies is available
[143]. Portfolio mode di↵erentiates higher-order problems from the first-order ones. If the
problem is first-order all higher-order prover features are turned o↵. In particular, the prover
uses standard first-order superposition calculus and disables collaboration with the backend
prover. Other than that, the portfolio is static and does not depend on the syntactic properties
of the problem.

Implementation

The prover is implemented in OCaml, and has been around for nine years. Term indexing
is done using fingerprints for unification, perfect discrimination trees for rewriting, and feature
vectors for subsumption. Some inference rules such as contextual literal cutting make heavy use
of subsumption. For higher-order problems some strategies use E prover, running in lambda-free
higher-order mode, as an end-game backend prover. The code can be found at

https://github.com/sneeuwballen/zipperposition

and is entirely free software (BSD-licensed).
Zipperposition can also output graphic proofs using graphviz. Some tools to perform type

inference and clausification for typed formulas are also provided, as well as a separate library
for dealing with terms and formulas [20].

The code can be found at

https://github.com/sneeuwballen/zipperposition

and is entirely free software (BSD-licensed).
Zipperposition can also output graphic proofs using graphviz. Some tools to perform type

inference and clausification for typed formulas are also provided, as well as a separate library
for dealing with terms and formulas [20].

Expected Competition Performance

The prover is expected to have average performance on FOF. It is expected to perform
well at THF, at least as good as last-year’s version. In the SLH and LTB divisions we expect
reasonable performance, on a par with Ehoh.
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8 Conclusion

The CADE-28 ATP System Competition was the twenty-sixth large scale competition for clas-
sical logic ATP systems. The organizer believes that CASC fulfills its main motivations: evalu-
ation of relative capabilities of ATP systems, stimulation of research, motivation for improving
implementations, and providing an exciting event. Through the continuity of the event and
consistency in the reporting of the results, performance comparisons with previous and future
years are easily possible. The competition provides exposure for system builders both within
and outside of the community, and provides an overview of the implementation state of running,
fully automatic, classical logic ATP systems.
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