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Abstract
The CADE ATP System Computer (CASC) evaluates the performance of sound,

fully automatic, classical first-order logic, ATP systems. The evaluation is in terms of
the number of problems solved, the number of acceptable proofs and models produced,
and the average runtime for problems solved, in the context of a bounded number of
eligible problems chosen from the TPTP problem library, and a specified time limit
for each solution attempt. The CADE-21 ATP System Competition (CASC-21) was
held on 17th July 2007. The design of the competition and it’s rules, and information
regarding the competing systems, are provided in this report.

1 Introduction

The CADE conferences are the major forum for the presentation of new research in all
aspects of automated deduction. In order to stimulate ATP research and system devel-
opment, and to expose ATP systems within and beyond the ATP community, the CADE
ATP System Competition (CASC) is held at each CADE conference. CASC-21 was held at
the 21st International Conference on Automated Deduction, on 17th July 2007. CASC-21
is the twelfth such ATP system competition [SS97a, SS98d, SS99, Sut00b, Sut01b, SSP02,
SS03, SS04, Sut05b, Sut06b, Sut07].

CASC evaluates the performance of sound, fully automatic, classical first-order logic,
ATP systems. The evaluation is in terms of:

• the number of problems solved,
• the number of acceptable proofs and models produced, and
• the average runtime for problems solved;

in the context of:
• a bounded number of eligible problems, chosen from the TPTP problem library

[SS98c], and
• a specified time limit for each solution attempt.

Twenty ATP systems and variants, listed in Table 1, entered into the various compe-
tition and demonstration divisions. The winners of the CASC-J3 (the previous CASC)
divisions were automatically entered into those divisions, to provide benchmarks against
which progress can be judged (the competition archive provides access to the systems’
executables and source code).

The design and procedures of this CASC evolved from those of previous CASCs
[SS97c, SS97b, SS98a, SS98b, Sut99, Sut00a, Sut01a, Sut02, Sut03, Sut04, Sut05a, Sut06a].
Important changes for this CASC are:
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• The FNT division - First order form Non-Theorems - was added. This division uses
counter-satisfiable and satisfiable FOF problems.

• The problems used the full set of TPTP roles defined in the TPTP language: axiom,
lemma, conjecture, etc.

• The distinguished strings used to report the problem status should (developers were
encouraged to do this, not absolutely required) use the SZS ontology, in a line starting
SZS status. For example

SZS status Unsatisfiable for SYN075+1

or

SZS status GaveUp for SYN075+1

• The distinguished strings used to delimit proofs/models should (developers were
encouraged to do this, not absolutely required) specify the precise output form named
in the SZS ontology, using lines starting SZS output start and SZS output end.
For example

SZS output start CNFRefutation for SYN075-1
...

SZS output end CNFRefutation for SYN075-1

The competition organizer is Geoff Sutcliffe. The competition is overseen by a panel
of knowledgeable researchers who are not participating in the event; the panel members
were Christoph Benzmüller, Alan Bundy, and John Slane. The rules, specifications, and
deadlines are absolute. Only the panel has the right to make exceptions. The competition
was run on computers provided by the Department of Computer Science at the University
of Manchester. The CASC-21 WWW site provides access to resources used before, during,
and after the event:

http://www.tptp.org/CASC/21

2 Divisions

CASC is divided into divisions according to problem and system characteristics. There
are competition divisions in which systems are explicitly ranked, and a demonstration di-
vision in which systems demonstrate their abilities without being formally ranked. Each
competition division uses problems that have certain logical, language, and syntactic char-
acteristics, so that the ATP systems that compete in the division are, in principle, able to
attempt all the problems in the division. Some divisions are further divided into problem
categories, which make it possible to analyze, at a more fine grained level, which sys-
tems work well for what types of problems. The problem categories have no effect on the
competition rankings, which are made at only the division level.

2.1 The Competition Divisions

The FOF division: First-order form non-propositional theorems (axioms with a provable
conjecture). The FOF division has two problem categories:

• The FNE category: FOF with No Equality
• The FEQ category: FOF with Equality

3



The CNF division: Clause normal form really non-propositional theorems (unsatis-
fiable clause sets), but not unit equality problems (see the UEQ division below). Really
non-propositional means with an infinite Herbrand universe. The CNF division has five
problem categories:

• The HNE category: Horn with No Equality
• The HEQ category: Horn with some (but not pure) Equality
• The NNE category: Non-Horn with No Equality
• The NEQ category: Non-Horn with some (but not pure) Equality
• The PEQ category: Pure Equality

The FNT division: First-order form non-propositional non-theorems (axioms with an
unprovable conjecture, and satisfiable sets of axioms). The FNT division has two problem
categories:

• The FNN category: FNT with no Equality
• The FNQ category: FNT with Equality

The SAT division: Clause normal form really non-propositional non-theorems (satis-
fiable clause sets). The SAT division has two problem categories:

• The SNE category: SAT with No Equality
• The SEQ category: SAT with Equality

The EPR division: Effectively propositional clause normal form theorems and non-
theorems (clause sets). Effectively propositional means non-propositional with a finite
Herbrand Universe. The EPR division has two problem categories:

• The EPT category: Effectively Propositional Theorems (unsatisfiable clauses)
• The EPS category: Effectively Propositional non-theorems (Satisfiable clauses)

The UEQ division: Unit equality clause normal form really non-propositional theo-
rems (unsatisfiable clause sets).

Section 3.2 explains what problems are eligible for use in each division and category.
Section 4 explains how the systems are ranked in each division.

2.2 The Demonstration Division

ATP systems that cannot run on the competition computers, or cannot be entered into
the competition divisions for any other reason, can be entered into the demonstration
division. Demonstration division systems can run on the competition computers, or the
computers can be supplied by the entrant. Computers supplied by the entrant may be
brought to CASC, or may be accessed via the internet.

The entry specifies which competition divisions’ problems are to be used. The results
are presented along with the competition divisions’ results, but may not be comparable
with those results.

3 Infrastructure

3.1 Computers

The competition computers are Dell computers, each having:
• AMD Athlon XP 3000+, 2091MHz CPU
• 503MB memory
• Linux 2.6.20-1.2307.fc5 operating system

4



3.2 Problems

3.2.1 Problem Selection

The problems are from the TPTP problem library, version v3.2.0. The TPTP version used
for the competition is not released until after the system installation deadline, so that new
problems have not seen by the entrants.

The problems have to meet certain criteria to be eligible for selection:
• The TPTP uses system performance data to compute problem difficulty ratings, and

from the ratings classifies problems as one of [SS01]:
– Easy: Solvable by all state-of-the-art ATP systems
– Difficult: Solvable by some state-of-the-art ATP systems
– Unsolved: Solvable by no ATP systems
– Open: Theoremhood unknown

Difficult problems with a rating in the range 0.21 to 0.99 are eligible. Performance
data from systems submitted by the system submission deadline is used for comput-
ing the problem ratings for the TPTP version used for the competition.

• The TPTP distinguishes versions of problems as one of standard, incomplete, aug-
mented, especial, or biased. All except biased problems are eligible.

The problems used are randomly selected from the eligible problems at the start of the
competition, based on a seed supplied by the competition panel.

• The selection is constrained so that no division or category contains an excessive
number of very similar problems.

• The selection mechanism is biased to select problems that are new in the TPTP
version used, until 50% of the problems in each category have been selected, after
which random selection (from old and new problems) continues. The actual percent-
age of new problems used depends on how many new problems are eligible and the
limitation on very similar problems.

3.2.2 Number of Problems

The minimal numbers of problems that have to be used in each division and category, to
ensure sufficient confidence in the competition results, are determined from the numbers of
eligible problems in each division and category [GS96] (the competition organizers have to
ensure that there is sufficient CPU time available to run the ATP systems on this minimal
number of problems). The minimal numbers of problems is used in determining the CPU
time limit imposed on each solution attempt - see Section 3.3.

A lower bound on the total number of problems to be used is determined from the
number of computers available, the time allocated to the competition, the number of ATP
systems to be run on the competition computers over all the divisions, and the CPU time
limit, according to the following relationship:

NumberOfProblems =
NumberOfComputers ∗ T imeAllocated

NumberOfATPSystems ∗ CPUTimeLimit

It is a lower bound on the total number of problems because it assumes that every
system uses all of the CPU time limit for each problem. Since some solution attempts
succeed before the CPU time limit is reached, more problems can be used.

The numbers of problems used in the categories in the various divisions is (roughly)
proportional to the numbers of eligible problems than can be used in the categories, after
taking into account the limitation on very similar problems.
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The numbers of problems used in each division and category are determined according
to the judgement of the competition organizers.

3.2.3 Problem Preparation

In order to ensure that no system receives an advantage or disadvantage due to the specific
presentation of the problems in the TPTP, the tptp2X utility (distributed with the TPTP)
is used to:

• rename all predicate and function symbols to meaningless symbols
• randomly reorder the clauses and literals in CNF problems
• randomly reorder the formulae in FOF problems
• randomly reverse the equalities in UEQ problems
• remove equality axioms that are not needed by the ATP systems
• add equality axioms that are needed by the ATP systems
• output the problems in the formats required by the ATP systems. (The clause type

information, one of axiom, hypothesis, or conjecture, may be included in the final
output of each formula.)

Further, to prevent systems from recognizing problems from their file names, symbolic
links are made to the selected problems, using names of the form CCCNNN-1.p for the
symbolic links, with NNN running from 001 to the number of problems in the respective
division or category. The problems are specified to the ATP systems using the symbolic
link names.

In the demonstration division the same problems are used as for the competition
divisions, with the same tptp2X transformations applied. However, the original file names
are retained.

3.3 Resource Limits

In the competition divisions, CPU and wall clock time limits are imposed on each solution
attempt. A minimal CPU time limit of 240 seconds is used. The maximal CPU time limit
is determined using the relationship used for determining the number of problems, with the
minimal number of problems as the NumberOfRoblems. The CPU time limit is chosen
as a reasonable value within the range allowed, and is announced at the competition. The
wall clock time limit is imposed in addition to the CPU time limit, to limit very high
memory usage that causes swapping. The wall clock time limit is double the CPU time
limit.

In the demonstration division, each entrant can choose to use either a CPU or a wall
clock time limit, whose value is the CPU time limit of the competition divisions.

4 System Evaluation

All the divisions have an assurance ranking class, ranked according to the number of
problems solved (a “yes” output, giving an assurance of the existence of a proof/model).
The FOF, CNF, FNT, and SAT divisions additionally have and a proof/model ranking
class, ranked according to the number of problems solved with an acceptable proof/model
output on stdout. Ties are broken according to the average CPU times over problems
solved. All systems are automatically ranked in the assurance classes, and are ranked in
the proof/model classes if they output acceptable proofs/models.
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For each ATP system, for each problem, three items of data are recorded: whether
or not a solution was found, the CPU time taken, and whether or not a solution (proof
or model) was output on stdout. The systems are ranked from this performance data.
Division and class winners are announced and prizes are awarded.

The competition panel decides whether or not the systems’ proofs and models are
acceptable. The criteria include:

• Derivations must be complete, starting at formulae from the problem, and ending at
the conjecture (for axiomatic proofs) or a false formula (for proofs by contradiction,
including CNF refutations).

• For proofs of FOF problems by CNF refutation, the conversion from FOF to CNF
must be adequately documented.

• Derivations must show only relevant inference steps.
• Inference steps must document the parent formulae, the inference rule used, and the

inferred formula.
• Inference steps must be reasonably fine-grained.
• An unsatisfiable set of ground instances of clauses is acceptable for establishing the

unsatisfiability of a set of clauses.
• Models must be complete, documenting the domain, function maps, and predicate

maps. The domain, function maps, and predicate maps may be specified by explicit
ground lists (of mappings), or by any clear, terminating algorithm.

In the assurance classes, and the EPR and UEQ divisions, the ATP systems are not
required to output solutions (proofs or models). However, systems that do output solutions
to stdout are highlighted in the presentation of results.

If a system is found to be unsound during or after the competition, but before the
competition report is published, and it cannot be shown that the unsoundness did not
manifest itself in the competition, then the system is retrospectively disqualified. At
some time after the competition, all high ranking systems in each division are tested over
the entire TPTP. This provides a final check for soundness (see Section 6.1 Properties
regarding soundness checking before the competition). At some time after the competition,
the proofs from the winners of the CNF and FOF division proof classes, and the models
from the winners of the FNT and SAT division model classes, are checked by the panel.
If any of the proofs or models are unacceptable, i.e., they are significantly worse than the
samples provided, then that system is retrospectively disqualified. All disqualifications are
explained in the competition report.

5 System Entry

To be entered into CASC, systems have to be registered using the CASC system reg-
istration form. No registrations are accepted after the registration deadline. For each
system entered, an entrant has to be nominated to handle all issues (including execution
difficulties) arising before and during the competition. The nominated entrant must for-
mally register for CASC. However, it is not necessary for entrants to physically attend the
competition.

Systems can be entered at only the division level, and can be entered into more than
one division (a system that is not entered into a competition division is assumed to perform
worse than the entered systems, for that type of problem - wimping out is not an option).
Entering many similar versions of the same system is deprecated, and entrants may be
required to limit the number of system versions that they enter. The division winners from

7



the previous CASC are automatically entered into their divisions, to provide benchmarks
against which progress can be judged.

It is assumed that each entrant has read the WWW pages related to the competition,
and has complied with the competition rules. Non-compliance with the rules could lead
to disqualification. A “catch-all” rule is used to deal with any unforseen circumstances:
No cheating is allowed. The panel is allowed to disqualify entrants due to unfairness, and
to adjust the competition rules in case of misuse.

5.1 System Description

A system description has to be provided for each ATP system entered, using the HTML
schema supplied on the CASC WWW site. The system description must fit onto two
pages, using 12pt times font. The schema has the following sections:

• Architecture. This section introduces the ATP system, and describes the calculus
and inference rules used.

• Implementation. This section describes the implementation of the ATP system,
including the programming language used, important internal data structures, and
any special code libraries used.

• Strategies. This section describes the search strategies used, why they are effective,
and how they are selected for given problems. Any strategy tuning that is based on
specific problems’ characteristics must be clearly described (and justified in light of
the tuning restrictions).

• Expected competition performance. This section makes some predictions about the
performance of the ATP system in each of the divisions and categories in which the
system is competing.

• References.

The system description has to be emailed to the competition organizers by the sys-
tem description deadline. The system descriptions, along with information regarding the
competition design and procedures, form the proceedings for the competition.

5.2 Sample Solutions

For systems in the proof and model classes, representative sample solutions must be
emailed to the competition organizers before the sample solutions deadline. Proof sam-
ples for the CNF division must include a proof for SYN075-1. Proof samples for the FOF
division must include a proof for SYN075+1. Model samples for the FNT division must
include models for MGT019+2 and SWV010+1. Model samples for the SAT division must
include a model for MGT031-1. The sample solutions must illustrate the use of all inference
rules. A key must be provided if any non-obvious abbreviations for inference rules or other
information are used.

6 System Requirements

6.1 System Properties

Systems are required to have the following properties:
• The ATP systems have to run on a single locally provided standard UNIX computer

(the competition computers - see Section 3.1). ATP systems that cannot run on the
competition computers can be entered into the demonstration division.
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• Systems have to be fully automatic, i.e., any command line switches have to be the
same for all problems.

• Systems have to be sound. At some time before the competition all the systems in the
competition divisions are tested for soundness. Non-theorems are submitted to the
systems in the FOF, CNF, EPR, and UEQ divisions, and theorems are submitted to
the systems in the FNT, SAT and EPR divisions. Finding a proof of a non-theorem or
a disproof of a theorem indicates unsoundness. If an ATP system fails the soundness
testing it must be repaired by the unsoundness repair deadline or be withdrawn. The
soundness testing eliminates the possibility of an ATP system simply delaying for
some amount of time and then claiming to have found a solution. At some time after
the competition, all high ranking systems in the competition divisions are tested over
the entire TPTP. This provides a final check for soundness. For systems running on
entrant supplied computers in the demonstration division, the entrant must perform
the soundness testing and report the results to the competition organizers.

• Systems do not have to be complete in any sense, including calculus, search control,
implementation, or resource requirements.

• The ATP systems have to be executable by a single command line, using an absolute
path name for the executable, which might not be in the current directory. The
command line arguments are the absolute path name of a symbolic link as the
problem file name, the time limit (if required by the entrant), and entrant specified
system switches (the same for all problems). No shell features, such as input or
output redirection, may be used in the command line. No assumptions may be
made about the format of the problem file name.

• The ATP systems that run on the competition computers have to be interruptable
by a SIGXCPU signal, so that the CPU time limit can be imposed on each solution
attempt, and interruptable by a SIGALRM signal, so that the wall clock time limit can
be imposed on each solution attempt. For systems that create multiple processes,
the signal is sent first to the process at the top of the hierarchy, then one second later
to all processes in the hierarchy. Any orphan processes are killed after that, using
SIGKILL. The default action on receiving these signals is to exit (thus complying with
the time limit, as required), but systems may catch the signals and exit of their own
accord. If a system runs past a time limit this is noticed in the timing data, and the
system is considered to have not solved that problem.

• When terminating of their own accord, the ATP systems have to output a distin-
guished string (specified by the entrant) on stdout indicating either that a solution
has been found, or that no conclusion has been reached. The distinguished strings
the problem status should use the SZS ontology, in a line starting SZS status. For
example

SZS status Unsatisfiable for SYN075+1

or

SZS status GaveUp for SYN075+1

Only the first such string is recognized, and accepted as the system’s claimed result.
• When outputing proofs/models for the proof/model ranking classes, the start and

end of the proof/model must be identified by distinguished strings (specified by the
entrant). These pairs of strings must be different for proofs and models. The distin-
guished strings should specify the precise output form named in the SZS ontology,
using lines starting SZS output start and SZS output end. For example

9



SZS output start CNFRefutation for SYN075-1
...

SZS output end CNFRefutation for SYN075-1

The string specifying the problem status must be output before the start of a
proof/model.

• If an ATP system terminates of its own accord, it may not leave any temporary
or other output files. If an ATP system is terminated by a SIGXCPU or SIGALRM, it
may not leave any temporary or other output files anywhere other than in /tmp.
Multiple copies of the ATP systems have to be executable concurrently on different
machines but in the same (NFS cross mounted) directory. It is therefore necessary
to avoid producing temporary files that do not have unique names, with respect to
the machines and other processes. An adequate solution is a file name including the
host machine name and the process id.

• For practical reasons excessive output from the ATP systems is not allowed. A
limit, dependent on the disk space available, is imposed on the amount of stdout
and stderr output that can be produced. The limit is at least 10KB per problem
(averaged over all problems so that it is possible to produce some long proofs).

• The precomputation and storage of any information specifically about TPTP prob-
lems is not allowed. Strategies and strategy selection based on the characteristics of
a few specific TPTP problems are not allowed, i.e., strategies and strategy selection
must be general purpose and expected to extend usefully to new unseen problems.
If automatic strategy learning procedures are used, the learning must ensure that
sufficient generalization is obtained, and that no learning at the individual problem
level is performed.

• For every problem solved, the system’s solution process must be reproducible by
running the system again.

Entrants must ensure that their systems execute in a competition-like environment,
according to the system checks described in Section 6.4. Entrants are advised to perform
these checks well in advance of the system installation deadline. This gives the competition
organizers time to help resolve any difficulties encountered. Entrants will not have access
to the competition computers.

6.2 System Delivery

For systems running on the competition computers, entrants must email an installation
package to the competition organizers by the installation deadline. The installation pack-
age must be a .tar.gz file containing the system source code, any other files required for
installation, and a ReadMe file. The ReadMe file must contain:

• Instructions for installation
• Instructions for executing the system
• Format of problem files, in the form of tptp2X format and transformation parameters.
• Command line, using %s and %d to indicate where the problem file name and CPU

time limit must appear.
• The distinguished strings output.

The installation procedure may require changing path variables, invoking make or
something similar, etc, but nothing unreasonably complicated. All system binaries must
be created in the installation process; they cannot be delivered as part of the installation
package. The system is reinstalled onto the competition computers by the competition
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organizers, following the instructions in the ReadMe file. Installation failures before the
installation deadline are passed back to the entrant. After the installation deadline access
to the competition computers is denied, and no further changes or late systems are accepted
(i.e., deliver your installation package before the installation deadline so if the installation
fails you have a chance to fix it!). If you are in doubt about your installation package or
procedure, please email the competition organizers.

For systems running on entrant supplied computers in the demonstration division,
entrants must deliver a source code package to the competition organizers by the start of
the competition. The source code package must be a .tar.gz file containing the system
source code.

After the competition all competition division systems’ source code, is made publically
available on the CASC WWW site. In the demonstration division, the entrant specifies
whether or not the source code is placed on the CASC WWW site.

6.3 System Execution

Execution of the ATP systems on the competition computers is controlled by a perl script,
provided by the competition organizers. The jobs are queued onto the computers so that
each computer is running one job at a time. All attempts at the Nth problems in all the
divisions and categories are started before any attempts at the (N+1)th problems.

During the competition a perl script parses the systems’ outputs. If any of an ATP
system’s distinguished strings are found then the CPU time used to that point is noted.
A system has solved a problem iff it outputs its termination string within the CPU time
limit, and a system has produced a proof iff it outputs its end-of-proof/model string within
the CPU time limit. The result and timing data is used to generate an HTML file, and a
WWW browser is used to display the results.

The execution of the demonstration division systems is supervised by their entrants.

6.4 System Checks

• Check: The ATP system can run on a computer that has the same configuration
as the competition computers. The competition computers’ configuration, obtained
from uname, is:

> uname -mp -sr
Linux 2.6.20-1.2307.fc5 i686 athlon

If the ATP system requires any special software, libraries, etc, which not part of
a standard installation, please let the competition organizers know in the system
registration.

• Check: The ATP system can be run by an absolute path name for the executable.
For example

prompt> pwd
/home/tptp
prompt> which MyATPSystem
/home/tptp/bin/MyATPSystem
prompt> /home/tptp/bin/MyATPSystem /home/tptp/TPTP/Problems/SYN/SYN075-1.p
SZS status Unsatisfiable for SYN075-1

• Check: The ATP system accepts an absolute path name of a symbolic link as the
problem file name. For example
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prompt> cd /home/tptp/tmp
prompt> ln -s /home/tptp/TPTP/Problems/SYN/SYN075-1.p CCC001-1.p
prompt> cd /home/tptp
prompt> /home/tptp/bin/MyATPSystem /home/tptp/tmp/CCC001-1.p
SZS status Unsatisfiable for CCC001-1

• Check: The ATP system makes no assumptions about the format of the problem file
name. For example

prompt> ln -s /home/tptp/TPTP/Problems/GRP/GRP001-1.p \_foo-Blah
prompt> /home/tptp/bin/MyATPSystem \_foo-Blah
SZS status Unsatisfiable for _foo-Blah

• Check: The ATP system can run under the TreeLimitedRun program (sources are
available from the CASC WWW site). For example

prompt> which TreeLimitedRun
/home/tptp/bin/TreeLimitedRun
prompt> /home/tptp/bin/TreeLimitedRun -q0 200 400 /home/tptp/bin/MyATPSystem

/home/tptp/tmp/CCC001-1.p
TreeLimitedRun: ------------------------------------------------
TreeLimitedRun: /home/tptp/bin/MyATPSystem
TreeLimitedRun: CPU time limit is 200s
TreeLimitedRun: WC time limit is 400s
TreeLimitedRun: PID is 4867
TreeLimitedRun: ------------------------------------------------
SZS status Unsatisfiable for CCC001-1
FINAL WATCH: 147.8 CPU 150.0 WC

• Check: The ATP system’s CPU time can be limited using the TreeLimitedRun
program. For example

prompt> /home/tptp/bin/TreeLimitedRun -q0 10 20 /home/tptp/bin/MyATPSystem
/home/tptp/tmp/CCC001-1.p

TreeLimitedRun: ------------------------------------------------
TreeLimitedRun: /home/tptp/bin/MyATPSystem
TreeLimitedRun: CPU time limit is 10s
TreeLimitedRun: WC time limit is 20s
TreeLimitedRun: PID is 5827
TreeLimitedRun: ------------------------------------------------
CPU time limit exceeded
FINAL WATCH: 10.7 CPU 13.1 WC

• Check: The ATP system’s wall clock time can be limited using the TreeLimitedRun
program. For example

prompt> /home/tptp/bin/TreeLimitedRun -q0 20 10 /home/tptp/bin/MyATPSystem
/home/tptp/tmp/CCC001-1.p

TreeLimitedRun: ------------------------------------------------
TreeLimitedRun: /home/tptp/bin/MyATPSystem
TreeLimitedRun: CPU time limit is 20s
TreeLimitedRun: WC time limit is 10s
TreeLimitedRun: PID is 5827
TreeLimitedRun: ------------------------------------------------
Alarm clock
FINAL WATCH: 9.7 CPU 10.1 WC
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• Check: The system outputs a distinguished string when terminating of its own
accord. The SZS format, described in Section 6.1, has been used here. If appropriate,
similar checks should be made for the cases where no solution exists and where no
conclusion is reached.

prompt> /home/tptp/bin/TreeLimitedRun -q0 200 400 /home/tptp/bin/MyATPSystem
/home/tptp/tmp/CCC001-1.p

TreeLimitedRun: ------------------------------------------------
TreeLimitedRun: /home/tptp/bin/MyATPSystem
TreeLimitedRun: CPU time limit is 200s
TreeLimitedRun: WC time limit is 400s
TreeLimitedRun: PID is 5827
TreeLimitedRun: ------------------------------------------------
SZS status Unsatisfiable for CCC001-1
FINAL WATCH: 147.8 CPU 150.0 WC

• Check: The system outputs distinguished strings at the start and end of its solution.
The SZS format, described in Section 6.1, has been used here.

prompt> /home/tptp/bin/TreeLimitedRun -q0 200 400 /home/tptp/bin/MyATPSystem
-output_proof /home/tptp/tmp/CCC001-1.p

TreeLimitedRun: ------------------------------------------------
TreeLimitedRun: /home/tptp/bin/MyATPSystem
TreeLimitedRun: CPU time limit is 200s
TreeLimitedRun: WC time limit is 400s
TreeLimitedRun: PID is 5827
TreeLimitedRun: ------------------------------------------------
SZS status Unsatisfiable for CCC001-1
SZS output start CNFRefutation for CCC001-1

... acceptable proof/model here ...
SZS output end CNFRefutation for CCC001-1
FINAL WATCH: 147.8 CPU 150.0 WC

• Check: No temporary or other files are left if the system terminates of its own
accord, and no temporary or other files are left anywhere other than in /tmp if the
system is terminated by a SIGXCPU or SIGALRM. Check in the current directory, the
ATP system’s directory, the directory where the problem’s symbolic link is located,
and the directory where the actual problem file is located.

prompt> pwd
/home/tptp
prompt> /home/tptp/bin/TreeLimitedRun -q0 200 400 /home/tptp/bin/MyATPSystem

/home/tptp/tmp/CCC001-1.p
TreeLimitedRun: ------------------------------------------------
TreeLimitedRun: /home/tptp/bin/MyATPSystem
TreeLimitedRun: CPU time limit is 200s
TreeLimitedRun: WC time limit is 400s
TreeLimitedRun: PID is 13526
TreeLimitedRun: ------------------------------------------------
SZS status Unsatisfiable for CCC001-1
FINAL WATCH: 147.8 CPU 150.0 WC
prompt> ls /home/tptp

... no temporary or other files left here ...
prompt> ls /home/tptp/bin
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... no temporary or other files left here ...
prompt> ls /home/tptp/tmp

... no temporary or other files left here ...
prompt> ls /home/tptp/TPTP/Problems/GRP

... no temporary or other files left here ...
prompt> ls /tmp

... no temporary or other files left here by decent systems ...

• Check: Multiple concurrent executions do not clash. For example

prompt> (/bin/time /home/tptp/bin/TreeLimitedRun -q0 200 400
/home/tptp/bin/MyATPSystem /home/tptp/tmp/CCC001-1.p) &
(/bin/time /home/tptp/bin/TreeLimitedRun -q0 200 400
/home/tptp/bin/MyATPSystem /home/tptp/tmp/CCC001-1.p)

TreeLimitedRun: ------------------------------------------------
TreeLimitedRun: /home/tptp/bin/MyATPSystem
TreeLimitedRun: CPU time limit is 200s
TreeLimitedRun: WC time limit is 400s
TreeLimitedRun: PID is 5827
TreeLimitedRun: ------------------------------------------------
TreeLimitedRun: ------------------------------------------------
TreeLimitedRun: /home/tptp/bin/MyATPSystem
TreeLimitedRun: CPU time limit is 200s
TreeLimitedRun: WC time limit is 400s
TreeLimitedRun: PID is 5829
TreeLimitedRun: ------------------------------------------------
SZS status Unsatisfiable for CCC001-1
FINAL WATCH: 147.8 CPU 150.0 WC

SZS status Unsatisfiable for CCC001-1
FINAL WATCH: 147.8 CPU 150.0 WC

7 The ATP Systems

These system descriptions were written by the entrants.

7.1 Darwin 1.3

Peter Baumgartner1, Alexander Fuchs2, Cesare Tinelli2
1NICTA Australia,
2University of Iowa, USA

Architecture

Darwin [BFT04, BFT06a] is an automated theorem prover for first order clausal logic. It
is the first implementation of the Model Evolution Calculus [BT03]. The Model Evolution
Calculus lifts the propositional DPLL procedure to first-order logic. One of the main
motivations for this approach was the possibility of migrating to the first-order level some
of those very effective search techniques developed by the SAT community for the DPLL
procedure.

The current version of Darwin implements first-order versions of unit propagation
inference rules analogously to a restricted form of unit resolution and subsumption by
unit clauses. To retain completeness, it includes a first-order version of the (binary)
propositional splitting inference rule.
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Proof search in Darwin starts with a default interpretation for a given clause set, which
is evolved towards a model or until a refutation is found.

Implementation

The central data structure is the context. A context represents an interpretation as a
set of first-order literals. The context is grown by using instances of literals from the
input clauses. The implementation of Darwin is intended to support basic operations on
contexts in an efficient way. This involves the handling of large sets of candidate literals
for modifying the current context. The candidate literals are computed via simultaneous
unification between given clauses and context literals. This process is sped up by stor-
ing partial unifiers for each given clause and merging them for different combinations of
context literals, instead of redoing the whole unifier computations. For efficient filtering
of unneeded candidates against context literals, discrimination tree or substitution tree
indexing is employed. The splitting rule generates choice points in the derivation which
are backtracked using a form of backjumping similar to the one used in DPLL-based SAT
solvers.

Improvements to the previous version include additional preprocessing steps, less mem-
ory requirements, and lemma learning [BFT06b].

Darwin is implemented in OCaml and has been tested under various Linux distributions
(compiled but untested on FreeBSD, MacOS X, Windows). It is available from:

http://goedel.cs.uiowa.edu/Darwin/

Strategies

Darwin traverses the search space by iterative deepening over the term depth of candidate
literals. Darwin employs a uniform search strategy for all problem classes.

Expected Competition Performance

Darwin 1.3 is the CASC-J3 EPR division winner.

7.2 Darwin 1.4

Peter Baumgartner1, Alexander Fuchs2, Cesare Tinelli2
1NICTA Australia,
2University of Iowa, USA

Architecture

Darwin [BFT04, BFT06a] is an automated theorem prover for first order clausal logic.
It is an implementation of the Model Evolution Calculus [BT03]. The Model Evolution
Calculus lifts the propositional DPLL procedure to first-order logic. One of the main
motivations for this approach was the possibility of migrating to the first-order level some
of those very effective search techniques developed by the SAT community for the DPLL
procedure.

The current version of Darwin implements first-order versions of unit propagation
inference rules analogously to a restricted form of unit resolution and subsumption by
unit clauses. To retain completeness, it includes a first-order version of the (binary)
propositional splitting inference rule.

Proof search in Darwin starts with a default interpretation for a given clause set, which
is evolved towards a model or until a refutation is found.
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Implementation

The central data structure is the context. A context represents an interpretation as a
set of first-order literals. The context is grown by using instances of literals from the
input clauses. The implementation of Darwin is intended to support basic operations on
contexts in an efficient way. This involves the handling of large sets of candidate literals
for modifying the current context. The candidate literals are computed via simultaneous
unification between given clauses and context literals. This process is sped up by stor-
ing partial unifiers for each given clause and merging them for different combinations of
context literals, instead of redoing the whole unifier computations. For efficient filtering
of unneeded candidates against context literals, discrimination tree or substitution tree
indexing is employed. The splitting rule generates choice points in the derivation which
are backtracked using a form of backjumping similar to the one used in DPLL-based SAT
solvers. Darwin is implemented in OCaml and has been tested under various Linux dis-
tributions. It is available from

http://goedel.cs.uiowa.edu/Darwin/

Strategies

Darwin traverses the search space by iterative deepening over the term depth of candidate
literals. Darwin employs a uniform search strategy for all problem classes.

Expected Competition Performance

We expect its performance to be very strong in the EPR division.

7.3 FM-Darwin 1.4

Peter Baumgartner1, Alexander Fuchs2, Cesare Tinelli2
1NICTA Australia,
2University of Iowa, USA

Architecture

FM-Darwin [BFdNT06] is a finite model finder for first order clausal logic with equality,
in the spirit of Paradox [CS03].

For each domain size the problem is transformed into an equisatisfiable function-free
clause set, which is decided by the Darwin prover [BFT06a].

Implementation

FM-Darwin is implemented as an extension to Darwin, which can now be used in its default
mode or as a finite model finder. Like Paradox, the system uses clause splitting, term
definitions, static symmetry reduction, sort inference, and lemmas. In contrast, clause
splitting and term definitions are only applied in a restricted way, that is for variable
disjunct clause and ground terms, as ground instantiation is not performed and thus the
exponential increase in the size of the clause set does not happen.

FM-Darwin is available from
http://goedel.cs.uiowa.edu/Darwin/
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Strategies

FM-Darwin follows a popular strategy of finite domain finders. The first-order clausal
problem is transformed into a decidable logic, here function-free clause logic. Then, the
system tries to find a finite domain model for sizes 1 .. n. A given domain is encoded by
adding the axioms of totality and functionality for the symbols which have been converted
from function to predicate symbols, such that any finite model of the original problem can
be translated into a model of the transformed problem, and vice versa.

Like Paradox, FM-Darwin is a complete method for function-free clause sets, and can
also detect unsatisfiability if the totality axioms are not used in a refutation.

Expected Competition Performance

We expect its performance to be good in the SAT and FNT divisions.

7.4 E and EP 0.999

Stephan Schulz
Technische Universität München, Germany

Architecture

E 0.999 [Sch02a, Sch04b] is a purely equational theorem prover. The core proof procedure
operates on formulas in clause normal form, using a calculus that combines superposition
(with selection of negative literals) and rewriting. No special rules for non-equational lit-
erals have been implemented, i.e., resolution is simulated via paramodulation and equality
resolution. The basic calculus is extended with rules for AC redundancy elimination, some
contextual simplification, and pseudo-splitting. The latest versions of E also supports si-
multaneous paramodulation, either for all inferences or for selected inferences.

E is based on the DISCOUNT-loop variant of the given-clause algorithm, i.e. a strict
separation of active and passive facts. Proof search in E is primarily controlled by a
literal selection strategy, a clause evaluation heuristic, and a simplification ordering. The
prover supports a large number of preprogrammed literal selection strategies, many of
which are only experimental. Clause evaluation heuristics can be constructed on the fly
by combining various parameterized primitive evaluation functions, or can be selected
from a set of predefined heuristics. Supported term orderings are several parameterized
instances of Knuth-Bendix-Ordering (KBO) and Lexicographic Path Ordering (LPO).

The prover uses a preprocessing step to convert formulas in full first order format to
clause normal form. This step may introduce (first-order) definitions to avoid an exponen-
tial growth of the formula. Preprocessing also unfolds equational definitions and performs
some simplifications on the clause level.

The automatic mode determines literal selection strategy, term ordering, and search
heuristic based on simple problem characteristics of the preprocessed clausal problem.

EP 0.999 is just a combination of E 0.999 in verbose mode and a proof analysis tool
extracting the used inference steps.

Implementation

E is implemented in ANSI C, using the GNU C compiler. The most outstanding feature is
the global sharing of rewrite steps. Current versions of E add rewrite links from rewritten
to new terms. In effect, E is caching rewrite operations as long as sufficient memory is
available. Other important features are the use of perfect discrimination trees with age and
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size constraints for rewriting and unit-subsumption, feature vector indexing [Sch04a] for
forward and backward subsumption and contextual literal cutting, and a new polynomial
implementation of LPO [Loe04].

The program has been successfully installed under SunOS 4.3.x, Solaris 2.x, HP-UX
B 10.20, MacOS-X, and various versions of Linux. Sources of the latest released version
are available freely from

http://www.eprover.org
EP 0.999 is a simple Bourne shell script calling E and the postprocessor in a pipeline.

Strategies

E’s automatic mode is optimized for performance on TPTP. The optimization of E 0.999
is based on about 90 test runs over the library (and previous experience) and consists
of the selection of one of about 40 different strategies for each problem. All test runs
have been performed on SUN Ultra 60/300 machines with a time limit of 300 seconds (or
roughly equivalent configurations). All individual strategies are refutationally complete.
The worst one solves about 49We expect similar optimization for E 0.999. E distinguishes
problem classes based on a number of features, all of which have between 2 and 4 possible
values. The most important ones are

• Is the most general non-negative clause unit, Horn, or Non-Horn?
• Is the most general negative clause unit or non-unit?
• Are all negative clauses unit clauses?
• Are all literals equality literals, are some literals equality literals, or is the problem

non-equational?
• Are there a few, some, or many clauses in the problem?
• Is the maximum arity of any function symbol 0, 1, 2, or greater?
• Is the sum of function symbol arities in the signature small, medium, or large?

Wherever there is a three-way split on a numerical feature value, the limits are selected
automatically with the aim of splitting the set of problems into approximately equal sized
parts based on this one feature.

For classes above a threshold size, we assign the absolute best heuristic to the class.
For smaller, non-empty classes, we assign the globally best heuristic that solves the same
number of problems on this class as the best heuristic on this class does. Empty classes
are assigned the globally best heuristic. Typically, most selected heuristics are assigned
to more than one class.

Expected Competition Performance

In the last years, E performed well in most proof categories. We believe that E will again
be among the stronger provers in the CNF category. Performance on FOF problems should
be competitive. We hope that E will at least be a useful complement to dedicated systems
in the other categories.

EP 0.999 will be hampered by the fact that it has to analyse the inference step listing,
an operation that typically is about as expensive as the proof search itself. Nevertheless,
it should be competitive among the FOF∗ and CNF∗ systems.
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7.5 E-KRHyper 1.0

Björn Pelzer, Christoph Wernhard
Universität Koblenz-Landau, Germany

Architecture

E-KRHyper 1.0 [PW07] is a theorem proving and model generation system for first-order
logic with equality. It is an implementation of the E-hyper tableau calculus [BFP07],
which integrates a superposition-based handling of equality [BG98] into the hyper tableau
calculus [BFN96]. The system is an extension of the KRHyper theorem prover [Wer03],
which implements the original hyper tableau calculus.

An E-hyper tableau is a tree whose nodes are labeled with clauses and which is built
up by the application of the inference rules of the E-hyper tableau calculus. The calculus
rules are designed such that most of the reasoning is performed using positive unit clauses.
A branch can be extended with new clauses that have been derived from the clauses of
that branch.

A positive disjunction can be used to split a branch, creating a new branch for each dis-
junct. No variables may be shared between branches, and if a case-split creates branches
with shared variables, then these are immediately substituted by ground terms. The
grounding substitution is arbitrary as long as the terms in its range are irreducible: the
branch being split may not contain a positive equational unit which can simplify a sub-
stituting term, i.e. rewrite it with one that is smaller according to a reduction ordering.
When multiple irreducible substitutions are possible, each of them must be applied in
consecutive splittings in order to preserve completeness.

Redundancy rules allow the detection and removal of clauses that are redundant with
respect to a branch.

The hyper extension inference from the original hyper tableau calculus is equivalent to
a series of E-hyper tableau calculus inference applications. Therefore the implementation
of the hyper extension in KRHyper by a variant of semi-naive evaluation [Ull89] is retained
in E-KRHyper, where it serves as a shortcut inference for the resolution of non-equational
literals.

Implementation

E-KRHyper is implemented in the functional/imperative language OCaml with additional
preprocessing scripts in Prolog. The system runs on Unix and MS-Windows platforms and
is available under the GNU Public License from the E-KRHyper website at

http://www.uni-koblenz.de/ bpelzer/ekrhyper
The system accepts clause input in the TPTP-supported Protein-format. E-KRHyper

operates on an E-hyper tableau that is represented by linked node records. A layered
discrimination-tree based index provides access to the clauses in the tableau and supports
backtracking.

Strategies

This first version of E-KRHyper uses a uniform search strategy for all problems. The
E-hyper tableau is generated depth-first, with E-KRHyper always working on a single
branch. Refutational completeness and a fair search control are ensured by an iterative
deepening strategy with a limit on the maximum term weight of generated clauses.
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Expected Competition Performance

E-KRHyper has been completed recently, with limited testing and optimization done, so
the expectations are humble.

7.6 Equinox 1.2

Koen Claessen
Chalmers University of Technology, Sweden

Architecture

Equinox is an experimental theorem prover for pure first-order logic with equality. It finds
ground proofs of the input theory, by solving successive ground instantiations of the theory
using an incremental SAT-solver. Equality is dealt with using a Nelson-Oppen framework.

Implementation

The main part of Equinox is implemented in Haskell using the GHC compiler. Equinox
also has a built-in incremental SAT solver (MiniSat) which is written in C++. The two
parts are linked together on the object level using Haskell’s Foreign Function Interface.

Strategies

There is only one strategy in Equinox:

1. Give all ground clauses in the problem to a SAT solver.

2. Run the SAT-solver.

3. If a contradiction is found, we have a proof and we terminate.

4. If a model is found, we use the model to indicate which new ground instantiations
should be added to the SAT-solver.

5. Goto 2.

Expected Competition Performance

Equinox should perform reasonably well. There should be problems that it can solve that
few other provers can handle.

7.7 Fampire 1.3

Josef Urban
Charles University of Prague, Czech Republic

Architecture

Fampire 1.3. is the Vampire 8.1 prover using the FLOTTER (SPASS) clausifier.

Implementation

Vampire and (a slightly modified) FLOTTER are linked together using a simple Perl
script, Geoff Sutcliffe’s tptp4X utility, and slightly modified dfg2tptp utility.
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Strategies

The strategy is to use the FLOTTER clausifier, and run Vampire on the CNF problem.

Expected Competition Performance

The system outperforms Vampire 8.1 on Mizar problems, however it is weaker than Vam-
pire 8.1 on the TPTP library (for which is Vampire pre-optimized). It could solve some
problems that Vampire 8.1 will not solve.

7.8 Geo 2007j

Hans de Nivelle
University of Wroclaw, Poland

Architecture

Geo [dNM06, dN07] is based on geometric resolution. A geometric formula is a formula
of form:

FORALL x1, ..., xn
[ A1 /\ ... /\ Ap /\ v1 != w1 /\ ... /\ vq != wq -&gt; Z(x1,...,xn) ].

The Ai are atoms not containing (dis)equality. The arguments of the atoms Ai and
the inequalities vj != wj are among the variables x1, ..., xn. Function symbols and
constant symbols are not allowed.

Z(x1,...,xn) must have one of the following three forms:

1. The constant FALSE.

2. A disjunction B1 ... Br. The atoms Bk must be non-equality atoms. The
arguments of the atoms Bk are among the variables x1, ..., xn. There are no
function symbols, and no constants in the atoms Bk.

3. An existential quantification EXISTS y B. y is a variable distinct from x1,...,xn.
B is an atom which has all arguments among x1,...,xn,y. There are no function
symbols and constants in B.

As input, Geo accepts geometric formulas and first-order formulas. First-order formu-
las are transformed into geometric formulas. During this translation, function symbols
and constants are removed, and replaced by relations.

Geo accepts formulas either in its own syntax or in TPTP-syntax. Because CNF has
no special status for Geo, TPTP-formulas in CNF form are treated as ordinary first-order
formulas.

During search, Geo searches for a model of the geometric formulas by a combination
of backtracking and learning. Whenever it cannot extend an interpretation into a model,
Geo learns a new rule of Type 1, which ensures that Geo will not explore similar models
in the future.

In case Geo finds a finite model, it simply prints the model. In case no model exists,
it will eventually learn the rule -¿ FALSE, so that it is able to output a proof.

The final aim of geometric resolution, and of Geo, is to obtain a prover that is both
good at finding proofs, and at finding finite models.

Differences with last year (2006)
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• Geo2007j has lemma simplification. Learnt lemmas are used to simplify each other.
In addition, inductive consequences of the initial rules are used as simplification
rules.

• The heuristics for rule selection have been improved.

Implementation

Geo is written in C++. We try to keep the code readable and reasonably efficient at the
same time. Geo has no sophisticated datastructures. At this moment the priority lies with
the theoretical understanding of the calculus.

Strategies

Currently, Geo has only one strategy: It searches for a model by exhaustive search, and
learns a new rule at each backtracking point. Lemmas do not expire, but they can be
simplified.

Expected Competition Performance

Geo has become up to a hundred times faster on hard problems, due to the added simpli-
fication rules and the improved selection rules. So we expect that it will solve some more
problems than last year.

7.9 leanCoP 2.0

Jens Otten
University of Potsdam, Germany

Architecture

leanCoP is an automated theorem prover for classical first-order logic. It is a very compact
implementation of the connection calculus as described in the original leanCoP paper
[OB03], which is similar to the connection tableau calculus [LS01].

Implementation

leanCoP is implemented in Prolog. The source code of the core prover is only a few lines
long and fits on half a page. In a preprocessing step first-order formulas are translated
into clausal form; equality can be handled by adding the equality axioms. leanCoP 2.0
keeps the input clauses in Prolog’s database thus integrating Prolog’s indexing mechanism
into the lean theorem proving framework. leanCoP is available at

http://www.leancop.de

Strategies

The reduction rule of the connection calculus is applied before the extension rule is applied.
Open branches are selected in a depth-first way. Iterative deepening on the proof depth
is used to achieve completeness. leanCoP 2.0 integrates inference rules for regularity,
factorization and an additional technique to limit backtracking.
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Expected Competition Performance

We expect the performance of leanCoP 2.0 to be state-of-the-art according to the TPTP
standards, i.e. it is not subsumed by any other theorem prover on the given problem set.

Acknowledgments: Thomas Raths contributed to the development of leanCoP 2.0 by
performing comprehensive benchmark tests on several problem libraries.

7.10 ileanCoP 1.2

Jens Otten
University of Potsdam, Germany

Architecture

ileanCoP is an automated theorem prover for intuitionistic first-order logic. It is a very
compact implementation of the clausal connection calculus for intuitionistic logic [Ott05],
prefixes to capture the specific restrictions of intuitionistic logic.

Implementation

ileanCoP is implemented in Prolog and based on the classical prover leanCoP. Only a few
minor additions are necessary to turn leanCoP into a theorem prover for intuitionistic logic.
The source code of the core prover, which includes the prefix unification algorithm, is only
a few lines long and fits on one page. In a preprocessing step formulas are translated into
clausal form and a prefix is added to each literal. Equality can be handled by adding the
equality axioms. ileanCoP is available at

http://www.leancop.de/ileancop

Strategies

ileanCoP uses a classical proof search within the connection calculus to prove classical va-
lidity first, since every formula that is valid in intuitionistic logic is valid in classical logic
as well. After a classical proof has been found the prefixes of the connected literals are
unified using a prefix unification algorithm [OK96]. If unification of all prefixes succeeds
the formula is valid in intuitionistic logic. ileanCoP 1.2 integrates some additional tech-
niques from leanCoP 2.0, i.e. inference rules for regularity, factorization and an additional
technique to limit backtracking.

Expected Competition Performance

This is the first time an automated theorem prover for intuitionistic logic participates. We
expect the performance of ileanCoP 1.2 to be similar to former state-of-the-art theorem
provers for classical logic. This assumes that most of the given problems are intuition-
istically valid as well. Comprehensive tests on the TPTP library and the ILTP library
[ROK07] have shown that this is the case for many problems. Whenever the classical
component finds a proof for a given problem and the problem is intuitionistically valid,
ileanCoP should find a proof.

Acknowledgments: Thomas Raths contributed to the development of ileanCoP by per-
forming comprehensive benchmark tests on several problem libraries.
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7.11 iProver 0.2

Konstantin Korovin
The University of Manchester, England

Architecture

iProver is based on the instantiation calculus [GK03], which is complete for first-order
logic.

iProver successively instantiates a given set of clauses, and uses a ground SAT solver
for checking whether the current ground abstraction of clauses is satisfiable. If the ground
solver finds unsatisfiability then the prover terminates, proving unsatisfiability of the initial
set of clauses; otherwise the model for ground clauses is used to guide further instantia-
tions. The saturation process is implemented as a modification of a given clause algorithm.
We use non-perfect discrimination trees for the unification index. The following redun-
dancy eliminations are implemented: blocking non-proper instantiations; dismatching con-
straints [GK04]; resolution-based simplifications; propositional-based simplifications, and
removing duplicates. Equality is dealt with (internally) by adding the necessary axioms
of equality.

Implementation

iProver is implemented in OCaml and for the ground reasoning uses MiniSat [ES05].
iProver accepts cnf and fof formats. In the case of fof format, E prover [Sch02b] is used
for clausification.

Strategies

iProver has parameters to control literal selection, passive clause selection, frequency of
calling the SAT solver, interleaving instantiation with resolution.

Expected Competition Performance

Since the instantiation method behind iProver is a decision procedure for the EPR class,
we expect a reasonable performance in this class.

7.12 Metis 2.0

Joe Hurd
Oxford University, UK

Architecture

Metis 2.0 [Hur03] is a proof tactic used in the HOL4 interactive theorem prover. It works
by converting a higher order logic goal to a set of clauses in first order logic, with the
property that a refutation of the clause set can be translated to a higher order logic proof
of the original goal.

Experiments with various first order calculi [Hur03] have shown a given clause algo-
rithm and ordered resolution to best suit this application, and that is what Metis 2.0
implements. Since equality often appears in higher order logic goals, Metis 2.0 also imple-
ments the ordered paramodulation calculus.
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Implementation

Metis 2.0 is written in Standard ML, for ease of integration with HOL4. It uses indexes
for resolution, paramodulation, (forward) subsumption and demodulation. It keeps the
Active clause set reduced with respect to all the unit equalities so far derived.

In addition to standard size and distance measures, Metis 2.0 uses finite models to
weight clauses in the Waiting set. When integrated with higher order logic, a finite model
is manually constructed to interpret standard functions and relations in such a way as to
make many axioms true and negated goals false. Non-standard functions and relations
are interpreted randomly. Since it is part of the CASC competition rules that standard
functions and relations are obfuscated, Metis 2.0 will back-off to interpreting all functions
and relations randomly (except equality).

Metis 2.0 is free software, released under the GPL. It can be downloaded from
http://www.gilith.com/software/metis

Strategies

Metis 2.0 uses a fixed strategy for every input problem. Negative literals are always chosen
in favour of positive literals, and terms are ordered using the Knuth-Bendix ordering with
uniform symbol weight and precedence favouring reduced arity.

Expected Competition Performance

Running previous versions of Metis on previous CNF problem sets has scored in the bottom
half of the table, so that is the expected performance. Metis 2.0 always keeps proofs, so
the performance will be no different in the proof classes.

Testing on previous UEQ problem sets has shown Metis to be weak on equality prob-
lems, so I expect Metis 2.0 to perform relatively worse on the equality divisions, particu-
larly UEQ.

7.13 Muscadet 2.7

Dominique Pastre
Université René Descartes (Paris 5), France

Architecture

The Muscadet theorem prover [Pas01] is a knowledge-based system. It is based on Natural
Deduction, following the terminology of [Ble71] and [Pas78], and uses methods which
resembles those used by humans. It is composed of an inference engine, which interprets
and executes rules, and of one or several bases of facts, which are the internal representation
of ”theorems to be proved”. Rules are either universal and put into the system, or built
by the system itself by metarules from data (definitions and lemmas). Rules may add
new hypotheses, modify the conclusion, create objects, split theorems into two or more
subtheorems or build new rules which are local for a (sub-)theorem.

Implementation

Muscadet 2 [Pas01] is implemented in SWI-Prolog. Rules are written as declarative Prolog
clauses. Metarules are written as sets of Prolog clauses, more or less declarative. The in-
ference engine includes the Prolog interpreter and some procedural Prolog clauses. Proofs
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can be obtained in natural style. Muscadet 2 is available from
http://www.math-info.univ-paris5.fr/ pastre/muscadet/muscadet.html

Strategies

There are specific strategies for existential, universal, conjunctive or disjunctive hypotheses
and conclusions. Functional symbols may be used, but an automatic creation of interme-
diate objects allows deep subformulae to be flattened and treated as if the concepts were
defined by predicate symbols. The successive steps of a proof may be forward deduction
(deduce new hypotheses from old ones), backward deduction (replace the conclusion by a
new one) or refutation (only if the conclusion is a negation).

The system is also able to work with second order statements. It may also receive
knowledge and know-how for a specific domain from a human user; see [Pas89, Pas93].
These two possibilities are not used while working with the TPTP Library.

Expected Competition Performance

The best performances of Muscadet will be for problems manipulating many concepts in
which all statements (conjectures, definitions, axioms) are expressed in a manner similar
to the practice of humans, especially of mathematicians [Pas02, Pas07]. It will have poor
performances for problems using few concepts but large and deep formulas leading to many
splittings.

7.14 Otter 3.3

William McCune
Argonne National Laboratory, USA

Architecture

Otter 3.3 [McC03] is an ATP system for statements in first-order (unsorted) logic with
equality. Otter is based on resolution and paramodulation applied to clauses. An Otter
search uses the ”given clause algorithm”, and typically involves a large database of clauses;
subsumption and demodulation play an important role.

Implementation

Otter is written in C. Otter uses shared data structures for clauses and terms, and it uses
indexing for resolution, paramodulation, forward and backward subsumption, forward and
backward demodulation, and unit conflict. Otter is available from

http://www-unix.mcs.anl.gov/AR/otter/

Strategies

Otter’s original automatic mode, which reflects no tuning to the TPTP problems, will be
used.

Expected Competition Performance

Otter has been entered into CASC as a stable benchmark against which progress can be
judged (there have been only minor changes to Otter since 1996 [MW97], nothing that
really affects its performace in CASC). This is not an ordinary entry, and we do not hope
for Otter to do well in the competition.
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Acknowledgments: Ross Overbeek, Larry Wos, Bob Veroff, and Rusty Lusk contributed
to the development of Otter.

7.15 Paradox 1.3

Koen Claessen, Niklas Sörensson
Chalmers University of Technology and Gothenburg University, Sweden

Architecture

Paradox [CS03] is a finite-domain model generator. It is based on a MACE-style [McC94]
flattening and instantiating of the first-order clauses into propositional clauses, and then
the use of a SAT solver to solve the resulting problem.

Paradox incorporates the following features: Polynomial-time clause splitting heuris-
tics, the use of incremental SAT, static symmetry reduction techniques, and the use of sort
inference.

The main differences with Paradox 1.0 are: a better SAT-solver, better memory be-
haviour, and a faster clause instantiation algorithm.

Implementation

The main part of Paradox is implemented in Haskell using the GHC compiler. Paradox
also has a built-in incremental SAT solver which is written in C++. The two parts are
linked together on the object level using Haskell’s Foreign Function Interface.

Strategies

There is only one strategy in Paradox:
• Analyze the problem, finding an upper bound N on the domain size of models, where

N is possibly infinite. A finite such upper bound can be found, for example, for EPR
problems.

• Flatten the problem, and split clauses and simplify as much as possible.
• Instantiate the problem for domain sizes 1 up to N, applying the SAT solver incre-

mentally for each size. Report ”SATISFIABLE” when a model is found.
• When no model of sizes smaller or equal to N is found, report ”CONTRADICTION”.

In this way, Paradox can be used both as a model finder and as an EPR solver.

Expected Competition Performance

Paradox 1.3 is the CASC-J3 SAT division winner.

7.16 Paradox 2.2

Koen Claessen, Niklas Sörensson
Chalmers University of Technology, Sweden

Architecture

Paradox 2.2 is a rewrite of Paradox 1.3. Paradox 2.2 does not have all the features yet
that Paradox 1.3 has. Some experimental features, such as type-based model finding, have
been added.

See the description of Paradox 1.3 for general information.
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Expected Competition Performance

Paradox 2.2 will probably perform comparably to Paradox 1.3.

7.17 Vampire 8.1

Andrei Voronkov
University of Manchester, England

No system description supplied.

Expected Competition Performance

Vampire 8.1 is the CASC-J3 FOF and CNF division winner.

7.18 Vampire 9.0

Andrei Voronkov
University of Manchester, England

No system description supplied.

7.19 Waldmeister 806

Thomas Hillenbrand1, Bernd Löchner2
1Max-Planck-Institut für Informatik Saarbrücken, Germany
2Technische Universität Kaiserslautern, Germany

No system description supplied.

Expected Competition Performance

Waldmeister 806 is the CASC-J3 UEQ division winner.

8 Conclusion

The CADE-21 ATP System Competition is the twelfth large scale competition for clas-
sical first-order logic ATP systems. The organizers believe that CASC fulfills its main
motivations: stimulation of research, motivation for improving implementations, evalua-
tion of relative capabilities of ATP systems, and providing an exciting event. Through the
continuity of the event and consistency in the the reporting of the results, performance
comparisons with previous and future years are easily possible. The competition provides
exposure for system builders both within and outside of the community, and provided an
overview of the implementation state of running, fully automatic, first order ATP systems.
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